1 Python Scripting fiir Physiker - Handout W1

2 Built-In Types

2.1 Numbers

Number data types store numeric values (e.g integer,long,float,complex).
>>>var 1=4 #assign integer 4 to variable varl

>>>var 2=4. #assign float 4.0 to variable var2

>>>var 1, var2=3,5 #assign nmul tiple variables at once

They work with common operators +,-,*, /.
(see 5.4 http : //docs.python.org/library/stdtypes.html for a complete list of operators)

>>>a=6/5 #assigns integer result of 6/5 (1) to variable a

>>>p=6. /5. #assigns float result of 6/5 (1.2) to variable b

2.2 Strings

Strings in Python are identified as a contiguous set of characters in between quotation
marks.

>>>a="Spam Eggs" #assi gns sequence of characters to variable a

>>>g=" Spam Eggs’ #does the sanme

Strings also work with common operators +,*.

>>>g=" Spam Eggs" #assi gns sequence of characters to variable a
>>>gx 2

... Spam EggsSpam Eggs

>>>a+’ Eggs’

... Spam EggsEggs

There are also several string methods available, that may help working with strings. For
now, you may think of methods as functions attached to an object (in this case a string
object), which are triggered with a call expression and may or may not return some
result.

Synt ax:
resul t =var . met hod_nane(ar gs)

Methods are covered in more detail later on.

>>>a=" Spantggs"

>>>r esul t =a. upper () #transformstring i nto uppercase

>>>print result

... SPAMEGGS

>>>resul t =a. repl ace(’ Spami, "Boi |l ed") #replace substring with new one
>>>print result

... Boil edEggs

2.3 Lists

Lists are the most versatile of Python’s data types. A list contains items separated by
commas and enclosed within square brackets ([|). They work with operators +,* and
slices just like strings.

>>>a=[1, 4, Spanmi , ' Eggs’] #Assigns a list to variable a
>>>a+[4] #Operators work like with strings
...[1,4,’ Spam ,’ Eggs’, 4]

>>>g*% 2

...[1,4," Spami , ' Eggs’, 1, 4, Spam ,’ Eggs’]

Also a whole bunch of methods exist for lists.

>>>3. append(’ neow) #Adds an additional itemto the |ist
>>>print(a) #Here we are using the in-build function

#print to show the results
...[1,4,’ Spam ,’ Eggs’,’ neow]

>>>a. renpve(’ Eggs’) #Rermoves the first entry containing 'Eggs’ in the |ist
>>>print (a)
...[1,4," Spami,’ meow] #Noti ce how ' Eggs’ is now nissing,

#but *meow is still in there!

A more extended list of methods is found at
http : //docs.python.org/t torial/datastr ct res.html.

3 Getting Help

The methods introduced in the prior section are a representative, but small, sample of
what is available. For a complete list of an objects methods you can call the the built-in
dir function.

>>>dir("astring")
[..., replace’, ..., “upper’,...]

To ask what they do, you can call the help function.

>>>hel p("aString". upper)
...Help on built-in function upper:

...upper(...)
.. S.upper() -> string

Return a copy of the string S converted to uppercase.
... (END)

4 Indexing and Slicing

Strings and Lists are sequences - a positionally ordered collection of other object. Se-
quences maintain a left-to-right order among the items they contain. Their items are
stored and fetched by their relative position. Strings for example are sequences of one-
character strings.

To fetch the objects inside sequences we use Python’s indexing expressions

4.1 Indexing

Wth strings
>>>3="Spam Eggs"
B I R i SIS SRR S
| Sl plalm| _| E]lg] gl s|
i S S
0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

>>>3[0] #The first itemin a
;;;afl] #The second itemin a
QQQaF-l] #The last itemin a
$$$a?-2] #The second last itemin a

I ndexi ng techni ques work the sane way with lists

>>>k=[" Spanm', " _", "Eggs"]
>>>Kk[0]

... Spam

>>>K[- 1]

... Eggs

And even on nultiple layers
>>>k[- 1] [0]

... E

4.2 Slicing

In addition to simple positional indexing, sequences also support a more general form of
indexing known as slicing. Slicing allows to extract an entire section (slice) in a single
step.

Wth Strings
>>>g=" Spam Eggs"
>>>3[0: 4] #Slice of a fromindex O through 3 (not 4)

... Spam

>>>3g[5:] #Slice of a fromindex 5 to the end

... Eggs

>>>a[1:6: 2] #The third paraneter is the increment -> indices 1,1+2,1+4 are returned
... pnE

>>>g[5::-1] #Slice of a fromindex 5 to 0 (starting at index 5 with an increnent of -1)
... E_mapS

Again the same for lists

>>>k=[0, 1, 2, 3, 4]

>>>k[0: 3: 2]

...10,2]

5 Control Structures

5.1 Boolean statements

Evaluating Boolean statements and continue based on its value beeing "True’ or ’False’
is a fundamental concept of (Python-) programming.

>>>a=5.

>>>p=6.

Synt ax:

>>>a==p # checks whether a equals b or not (Note the difference between ' ==
... Fal se’

>>>al =b # checks whether a does not equals b or not

... True’

>>>a>=p # checks whether a greater or equal b or not

... Fal se’

>>>a<b # checks whether a lighter b or not

... True’

Si npl e Bool ean statenents can be connected by Bool ean operators and, or, not
>>>c=4.

>>>a<b and b<c

... Fal se’

>>>a<b and not b<c

... True

5.2 If, Else, Elif Statement

The if statement of Python is similar to that of other languages. The if statement eva-
luates the result of a Boolean expression and continues based on the result beeing True
or False.

Synt ax:
#Note: Python uses indentation as its nethod of grouping statenents
i f expressionl: #I f expressionl is True:
statenent1 #execute statenmentl
elif expression2: #lf expressionl is not True and expression2 is True:
stat enment 2 #execut e statenent2

el i f expressionN-1:
statenment N-1

el se: #I f expressionl, expression2, ... expressionN-1 are not True:
statenment N #execute statenment N

Here is a very simple example using the if-statement.

>>>| f 3==4:

>>> k=" Spam

>>> print k
>>>el | f 3<=4:

>>> print 'Eggs’

>>>el se:
>>> print ' Spam Eggs’
... Eggs’

5.3 While, For Loops

A loop is a construct that causes a section of a program to be repeated a certain number
of times. The repetition continues while the condition set for the loop remains true.
When the condition becomes false, the loop ends and the program control is passed to
the statement following the loop.

and

)

5.4 While

The while loop is one of the looping constructs available in Python. The while loop
continues until the expression becomes false. The expression has to be a logical expression
and must return either a true or a false value

Synt ax:
whi | e expressi on==Tr ue: #whil e expression is True:
st at ement #execut e statenent

Here is a very simple example using the while loop.

>>>k=0

>>>0hi | e k<3

>>> print "k=",k
>>> k=k+1

ok
.k
k

o
NP O

5.5 For

The for loop in Python has the ability to iterate over the items of any sequence, such as
a list or a string.

Synt ax:
for object in sequence: #For every object in sequence:
st at ement #execut e statenent

Here is a very simple example using the for loop.

k=[0, 1, 2]

>>>for itemin k: #Note: You can nane the iterator variable (here "itenmi) as you |ike
>>> print "item=item

...itenr0

...itenrl

...itenr2

6 Exercise

1. Calculate all prime numbers up to N=100.

2. Calculate all prime numbers up to N=1 000 000. You should probably find an
effective way to reduce computing time.

3. (Advanced) Write a function, that helps you search for a type-specific method. For
instance, you may need a method, that is able to find certain characters inside a
string. Your function call should look like the following example.

>>>f i nd_net hod("aString","find")
...4 possible nethods found. Show hel p? [y/n]
>>>y
. (The docunentation of the possible nethods are shown here)

