
1 Python S
ripting für Physiker - Handout W1

2 Built-In Types

2.1 Numbers

Number data types store numeri
 values (e.g integer,long,�oat,
omplex).

>>>var1=4 #assign integer 4 to variable var1
>>>var2=4. #assign float 4.0 to variable var2
>>>var1,var2=3,5 #assign multiple variables at once

They work with
ommon operators +,-,*,/.

(see 5.4 http : //docs.python.org/library/stdtypes.html for a
omplete list of operators)

>>>a=6/5 #assigns integer result of 6/5 (1) to variable a
>>>b=6./5. #assigns float result of 6/5 (1.2) to variable b

2.2 Strings

Strings in Python are identi�ed as a
ontiguous set of
hara
ters in between quotation

marks.

>>>a="Spam_Eggs" #assigns sequence of characters to variable a
>>>a=’Spam_Eggs’ #does the same

Strings also work with
ommon operators +,*.

>>>a="Spam_Eggs" #assigns sequence of characters to variable a
>>>a*2
...’Spam_EggsSpam_Eggs’
>>>a+’Eggs’
...’Spam_EggsEggs’

There are also several string methods available, that may help working with strings. For

now, you may think of methods as fun
tions atta
hed to an obje
t (in this
ase a string

obje
t), whi
h are triggered with a
all expression and may or may not return some

result.

Syntax:
result=var.method_name(args)

Methods are
overed in more detail later on.

>>>a="SpamEggs"
>>>result=a.upper() #transform string into uppercase
>>>print result
...’SPAMEGGS’
>>>result=a.replace(’Spam’,"Boiled") #replace substring with new one
>>>print result
...’BoiledEggs’

1

2.3 Lists

Lists are the most versatile of Python's data types. A list
ontains items separated by

ommas and en
losed within square bra
kets ([℄). They work with operators +,* and

sli
es just like strings.

>>>a=[1,4,’Spam’,’Eggs’] #Assigns a list to variable a
>>>a+[4] #Operators work like with strings
...[1,4,’Spam’,’Eggs’,4]
>>>a*2
...[1,4,’Spam’,’Eggs’,1,4,’Spam’,’Eggs’]

Also a whole bun
h of methods exist for lists.

>>>a.append(’meow’) #Adds an additional item to the list
>>>print(a) #Here we are using the in-build function

#print to show the results
...[1,4,’Spam’,’Eggs’,’meow’]
>>>a.remove(’Eggs’) #Removes the first entry containing ’Eggs’ in the list
>>>print(a)
...[1,4,’Spam’,’meow’] #Notice how ’Eggs’ is now missing,

#but ’meow’ is still in there!

A more extended list of methods is found at

http : //docs.python.org/tutorial/datastructures.html.

3 Getting Help

The methods introdu
ed in the prior se
tion are a representative, but small, sample of

what is available. For a
omplete list of an obje
ts methods you
an
all the the built-in

dir fun
tion.

>>>dir("aString")
...[...,’replace’,...,’upper’,...]

To ask what they do, you
an
all the help fun
tion.

>>>help("aString".upper)
...Help on built-in function upper:
...
...upper(...)
... S.upper() -> string
...
... Return a copy of the string S converted to uppercase.
...(END)

4 Indexing and Sli
ing

Strings and Lists are sequen
es - a positionally ordered
olle
tion of other obje
t. Se-

quen
es maintain a left-to-right order among the items they
ontain. Their items are

stored and fet
hed by their relative position. Strings for example are sequen
es of one-

hara
ter strings.

To fet
h the obje
ts inside sequen
es we use Python's indexing expressions

2

4.1 Indexing

With strings
>>>a="Spam_Eggs"

+---+---+---+---+---+---+---+---+---+
| S | p | a | m | _ | E | g | g | s |
+---+---+---+---+---+---+---+---+---+

0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

>>>a[0] #The first item in a
...’S’
>>>a[1] #The second item in a
...’p’
>>>a[-1] #The last item in a
...’s’
>>>a[-2] #The second last item in a
...’g’
Indexing techniques work the same way with lists
>>>k=["Spam","_","Eggs"]
>>>k[0]
...’Spam’
>>>k[-1]
...’Eggs’
And even on multiple layers
>>>k[-1][0]
...’E’

4.2 Sli
ing

In addition to simple positional indexing, sequen
es also support a more general form of

indexing known as sli
ing. Sli
ing allows to extra
t an entire se
tion (sli
e) in a single

step.

With Strings
>>>a="Spam_Eggs"
>>>a[0:4] #Slice of a from index 0 through 3 (not 4)
...’Spam’
>>>a[5:] #Slice of a from index 5 to the end
...’Eggs’
>>>a[1:6:2] #The third parameter is the increment -> indices 1,1+2,1+4 are returned
...’pmE’
>>>a[5::-1] #Slice of a from index 5 to 0 (starting at index 5 with an increment of -1)
...’E_mapS’

Again the same for lists
>>>k=[0,1,2,3,4]
>>>k[0:3:2]
...[0,2]

5 Control Stru
tures

5.1 Boolean statements

Evaluating Boolean statements and
ontinue based on its value beeing 'True' or 'False'

is a fundamental
on
ept of (Python-) programming.

3

>>>a=5.
>>>b=6.
Syntax:
>>>a==b # checks whether a equals b or not (Note the difference between ’==’ and ’=’)
...’False’
>>>a!=b # checks whether a does not equals b or not
...’True’
>>>a>=b # checks whether a greater or equal b or not
...’False’
>>>a<b # checks whether a lighter b or not
...’True’
Simple Boolean statements can be connected by Boolean operators and,or,not
>>>c=4.
>>>a<b and b<c
...’False’
>>>a<b and not b<c
...’True’

5.2 If, Else, Elif Statement

The if statement of Python is similar to that of other languages. The if statement eva-

luates the result of a Boolean expression and
ontinues based on the result beeing True

or False.

Syntax:
#Note: Python uses indentation as its method of grouping statements

if expression1: #If expression1 is True:
statement1 #execute statement1

elif expression2: #If expression1 is not True and expression2 is True:
statement2 #execute statement2

...
elif expressionN-1:

statementN-1
else: #If expression1, expression2, ... expressionN-1 are not True:

statementN #execute statementN

Here is a very simple example using the if-statement.

>>>if 3==4:
>>> k=’Spam’
>>> print k
>>>elif 3<=4:
>>> print ’Eggs’
>>>else:
>>> print ’Spam_Eggs’
...’Eggs’

5.3 While, For Loops

A loop is a
onstru
t that
auses a se
tion of a program to be repeated a
ertain number

of times. The repetition
ontinues while the
ondition set for the loop remains true.

When the
ondition be
omes false, the loop ends and the program
ontrol is passed to

the statement following the loop.

4

5.4 While

The while loop is one of the looping
onstru
ts available in Python. The while loop

ontinues until the expression be
omes false. The expression has to be a logi
al expression

and must return either a true or a false value

Syntax:

while expression==True: #while expression is True:
statement #execute statement

Here is a very simple example using the while loop.

>>>k=0
>>>while k<3:
>>> print ’k=’,k
>>> k=k+1
...k=0
...k=1
...k=2

5.5 For

The for loop in Python has the ability to iterate over the items of any sequen
e, su
h as

a list or a string.

Syntax:

for object in sequence: #For every object in sequence:
statement #execute statement

Here is a very simple example using the for loop.

k=[0,1,2]
>>>for item in k: #Note: You can name the iterator variable (here ’item’) as you like
>>> print ’item=’item
...item=0
...item=1
...item=2

6 Exer
ise

1. Cal
ulate all prime numbers up to N=100.

2. Cal
ulate all prime numbers up to N=1 000 000. You should probably �nd an

e�e
tive way to redu
e
omputing time.

3. (Advan
ed) Write a fun
tion, that helps you sear
h for a type-spe
i�
 method. For

instan
e, you may need a method, that is able to �nd
ertain
hara
ters inside a

string. Your fun
tion
all should look like the following example.

>>>find_method("aString","find")
...4 possible methods found. Show help? [y/n]
>>>y
... (The documentation of the possible methods are shown here)

5

