DYNAMICS OF THE INTERPLANETARY GAS AND MAGNETIC FIELDS* ## E. N. PARKER Enrico Fermi Institute for Nuclear Studies, University of Chicago Received January 2, 1958 ## ABSTRACT We consider the dynamical consequences of Biermann's suggestion that gas is often streaming outward in all directions from the sun with velocities of the order of 500-1500 km/sec. These velocities of 500 km/sec and more and the interplanetary densities of 500 ions/cm^3 (10^{14} gm/sec mass loss from the sun) follow from the hydrodynamic equations for a 3×10^6 °K solar corona. It is suggested that the outward-streaming gas draws out the lines of force of the solar magnetic fields so that near the sun the field is very nearly in a radial direction. Plasma instabilities are expected to result in the thick shell of disordered field (10^{-5} gauss) inclosing the inner solar system, whose presence has already been inferred from cosmic-ray observations.