Green’s functions

How to obtain all of them from those
simulated at v =¢?



Consider the focused transport equation (FTE) with adiabatic energy changes neglected:
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Here, the right-hand side is normalized to 1 particle injected into the flux tube at
time t =0, at location z = z,, at momentum p, and at pitch-cosine O < u < 1.

f=dN/d3x d3p = particle distribution function in 6-D phase space

A = flux tube cross-sectional area
L =A/(0A/0z) =focusing length
A = scattering mean free path

Note that we have assumed isotropic scattering (although the conclusions are not
affected by this assumption).

Instead of f, we can consider the differential intensity, d//dE = p? f, and multiply the FTE
by p?/v to get
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where s = vt is the path length traversed by the particle.



For a mono-energetic simulation, we give the registered number of particles at the
observer’s location integrated over energy. This, the recorded quantity is
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has been applied.
Using the scaled quantity j =/ ¢/v, we can get rid of speed in the equation completely:
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This is valid for all values of v, regardless of the speed we use to obtain a solution. Thus

i(s,2,1) = I(s, 2,1, )
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for j=1Ic/vg =1(s,2,p,c)

Thus, the Green’s function, with t replacing s as the independent variable, is
()

C(t, 2,1, v) = I(s,2,1,0) = ~j(s,2,1) = =1 (8,2, pt,¢) = ~C(s/¢, 2, p,c)
C - C

and since s = vt, we get

G(t,z,p,v) = %G(vt/c,z,u,c).

Therefore, simulating the Green’s function at v = c allows one to obtain the solution
at an arbitrary speed, v, provided that adiabatic deceleration can be neglected.



[duG(t, z, u, v)

G(t,z, p,v)

%G(vt/c,z,u,c).




