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The term ‘Space Weather’ refers to

variable conditions on the Sun, throughout space,
in the Earth’'s magnetic field and upper atmosphere
that can influence the performance and reliability of space-borne and
ground-based technological systems and endanger human life and health.

Adverse conditions in the space environment can cause disruption of
satellite operations, communications, navigation and electric power
distribution grids, leading to a variety of socioeconomic losses and

UOC\revosore.mov Impacts on our society

NAVIONAL SPACE WEATHER PROGRAM

STRATEGIC PLAN

National Space Weather Program Council, Washington, DC, June 2010
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Space Weather
can harm humans in space




THE SCIENTIFIC UNDEPINNINGS OF SPACE WEATHER

OUR SUN IS BORN
~ 5 BILLION YEARS AGO




OUR SUN:
A STAR THAT IS
CONSTANTLY
CHANGING



978-1-4614-0570-2/sun-earth-presentation/RedSun.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/Bursts.mov
../../Brekke/978-1-4614-0570-2/sun-earth-presentation/RedSun.mov

SOLAR
SUNSPOTS

2003/10/13 01:10
Play Spinning Sun_1 Movie




SOLAR SUNSPOT NUMBER (SNN)

More "Superstorms" at Earth
More Solar Particle Events?
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Fewer Superstorms at Earth Storms

Fewer Solar Particle Events? 2003

Carrington Event
1859

T
@
2
=
S
=
e
o
-3
@
-
S
)
2
5
s
S
=

Baker, 2012



>
Definition of a plasma SUMMER ~~
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* An Ionised gas consisting of positively and
negatively charged particles with approximately
equal charge densities

» Deviations from charge neutrality are small, as
soon as charge imbalance develops, large E are
produced to restore charge neutrality




e

Characteristic parameters >3§
of a plasma SUMMER - © ¢

* Number density n, for each species

* Temperature of particles of type s iIs directly
proportional to their average random kinetic energy

5 3 kBTS

2

» Debye length Ay: gives the spatial scale over which
particles in a plasma exert electrostatic forces on
each other,

Ao << L



* Number N, of particles inside > f’é
a Debye cube
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Plasmas in Space  sumer .
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* lonosphere

* Magnetosphere

* Heliosphere —
Voyagers



What is an Astronomical Unit (AU)??

Distance between Sun and Earth

About 150 million km

Light needs 8 minutes and 20 sec to reach the Earth.
With an airplane you would need 17 year to reach the Sun!
How old would you be? And how old when you got back?
If you went by car, 100 km/h, you would need 170 years!
With a horse, 13 km/h, it would take you 1317 years and

If you like walking you would need 3424 years!!!



The Voyager Odyssey

TERMINATION
<SOLAR APEX JERM
/HELIOPAUSE

NEPTUNE JUPITER
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Single particle motions A\
 Motion in a static uniform magnetic field
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e Motion of particles in D 6
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e Motion in a magnetic mirror field SUMMER | A
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Lower
field strength

Higher
field strength

Guiding center field line
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Charged particles trapped in the radiation belts —
Ring Current

Ring current




James Van
Allen kissing
goodbye
Explorer 4




Magnetohydrodynamics (MHD)
%Ij? V x (VX B)+—V2B

oB

ot =Vx(vxB)
frozen-in frozen-out
cHlle
\l |/
oB 1

ot _Moﬁ

VZB T = ]JOGLZ

HoO
B'= B(gm)( 0
Neutron 4 .
star pim =
(N2
)
0 v
By Pm B Prn t
AA t A4’
TY— v \ﬁ_/
/{3‘30 3 o _2!5 >——< } 6
" — T~ 7 f T~



The Solar Wind

Spiral Locus of
Fluid Parcels Emitted #1
from a Fixed Source
on Rotating Sun

Orbit of Earth

Location of Source
when First Parcel
Left Base of Corona

400 km/secC

Location of Source
when Last Parcel

Left Base of Corona

Sun Rotating wifh/

Angular Speed w

400 km/sec
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Corotating Interaction Region - CIR

AMBIENT
SOLAR WIND
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MHz
100

* Solar Flares

Outbursts in electromagnetic
radiation covering an immense
wavelength (from radio waves
to Gamma-rays)

500

 Coronal Mass Ejections - CMEs :/j/\i\

Gigantic clouds of ionized gas T
ejected into interplanetary space ~—FET—

- |mpulsive Phase

- I’u‘cmxlm 1
i —

0 10 20 30

e Solar Energetic Particles - SEPs i v
Accelerated to near-relativistic energies during major
solar events-can severely endanger traveling astronauts




SOLAR ERUPTIONS
1) Solar flares

2003/10/27 00:00
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2) Coronal Mass Ejections (CMEs)

2003/10/18 00:18
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3) Solar Energetic Particles, (SEPs)

CME

Sources of particle
radiation

Current
sheet
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SEP propagation
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IDEALIZED PROPAGATION MODELS

A small

a) ,ORDINARY" DIFFUSION

-~ -

— —

A finite

b) ,SCATTER-FREE" PROP
(WITH REFLECTING
BOUNDARY )

A<oo
but large

c) FOCUSSED TRANSPORT

( FOCUSING AND PITCH
ANGLE SCATTERING )










Bow Shock —» 4 -,
: Magnetosheath

Cusp Magnetopause
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Van Allen Belts

Magnetotail
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SPACE WEATHER
IMPACT AND EFFECTS

Coronal mass ejection Near'Earth
environments

‘Space Radiation Hazards and the Vision

for Space Exploration: Report of a Workshop,
National Research Council, 2006
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SPACE WEATHER
IMPACT AND EFFECTS
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Solar Proton Events
SPEs

‘Managing Radiation
Riks in the new era of
Space Exploration,
National Research
Council, 2008
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The ‘HESPERIA’
HORIZON 2020 Project:
‘HIGH ENERGY SOLAR PARTICLE EVENT
FORECASTING AND ANALYSIS’

‘HESPERIA Kiel, Germany
Summer School’ 29 Aug-2 Sept 2016
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m High Energy Solar Particle
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v Solar energetic particles (SEPs) are of prime astrophysical interest, but are
also a space weather hazard motivating the development of predictive capabilities.

v'The project is funded through the European Union’s HORIZON 2020 research
and Innovation Programme (Contract No 637324) and coordinated by the National
Observatory of Athens in Greece (Project Coordinator: Dr. Olga Malandraki) .

VIt will combine data and knowledge from 9 European partners and several
collaborating parties from US and Russia.
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* Olga Malandraki [National Observatory of Athens, NOA, Greece]
Project Coordinator
* Ludwig Klein [Observatoire de Paris, OBSPARIS, France]
* Rami Vainio [Turun Yliopisto, UTU, Finland]
* Neus Agueda [Universitat de Barcelona, UB, Spain]
* Marlon Nunez [Universidad de Malaga, UMA, Spain]
* Bernd Heber [Cristian-Albrechts-Universitaet zu Kiel, CAU, Germany]
* Rolf Buetikofer [Universitaet Bern, UBERN, Switzerland]
* Christos Sarlanis [ISNet, Greece]
* Norma B. Crosby [Inst. d’Aeronom. Spat. De Belgique, IASB-BIRA, Belgium]
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External Collaborators

* Galina Bazilevskaya [Lebedev Physical Institute of Russian Academy of
Sciences, Moscow, Russia]

* Veronica Bindi [University of Hawai at Manoa, Honolulu, USA]
* Ron Murphy [Naval Research Laboratory, Washington DC, USA]
* Allan Tylka [Washington DC, USA]

 Juan Rodriguez [NOAA, USA]
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National Observatory of Athens :

leader NOA leader UMA leader UTU
MANAGEMENT FORECASTING OF MODELING OF
SOLAR RADIATION SHOCK-
STORMS ACCELERATED
EVENTS

leader UB leader OBSPARIS
INVERSION SCIENTIFIC DATA
METHODS ANALYSIS:
GAMMA-RAYS,
RADIO SEPS

leader NOA leader ISNet leader NOA
SEP SERVER DISSEMINATION
RADIATION DEVELOPMENT AND EXTERNAL
IMPACT COORDINATION

The HESPERIA ‘High Energy Solar Particle Events Forecasting and Analysis’ project is:

v’ producing two novel forecasting tools based upon proven concepts (UMASEP, REIeASE).

v advancing our understanding of the physical mechanisms that result into high-energy solar particle
events (SEPs) exploiting novel datasets (FERMI/LAT/GBM; PAMELA; AMS)
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KICK-OFF MEETING

HESPERIA Kick-Off M
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Athens, Greece

read more
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1. To develop two novel SEP forecasting systems based
upon proven concepts (UMASEP, REleASE)

2. To develop SEP forecasting tools searching for electromagnetic
proxies of the gamma-ray emission in order to predict large SEP

events

3. To perform systematic exploitation of the novel high-energy
gamma-ray observations of the FERMI mission together with in situ

SEP measurements near 1 AU



» Fermi detection of sustained >100 Mel/

gamma-ray emission following solar flares
(Ackermann et al. 2014). Most likely origin
/s from neutral and charged pions produced
when >300 Mel/ protons interact deep in the

solar atmosphere. Long Duration Gamma-
Ray Flares (Ryan 2000).

» Twenty-six Fermi events studied from 2008
to 2015: numbers of protons, spectral
indices, onset times and durations.
Comparisons with flares and SEPs.



Obser‘vatlons of h lgh-ener‘gy +>10 MeV pion-decay count rate (Forrest et al. 1986)
emission fr‘om the 1982 June +0.511 MeV line flux (x10) (Share et al. 1983)

3 flare made by the
SMM/GRS. a) Time history
of the pion-decay y-ray
count rate revealing two
clear phases of emission. b)
y-ray spectra observed
during the impulsive phase
(left panel) and during the
second phase (right panel). M@0 1tas  Ttas 1182 1186 1200
The solid curves show the | | UT on 3 June 1983 |
different components of the .
spectrum, including:
bremsstrahlung from
primary electrons and
electrons and positrons from
pion-decay and neutral pion-
decay bump. Shown in red,
and scaled arbitrarily, is the
count rate observed in the

37 8 2 ° 10 100 10 100
511 keV annihilation line Photon energy (MeV) Photon energy (MeV)
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=
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The first LDGRF observed by Fermi and reported by the Fermi/LAT team in
Ackermann et al. (2014). Note that the flare was only an M3.7. Plot made using a
‘light-bucket’ analysis technique different than the Maximum Likelihood technique
used by LAT team. Emission lasted at least 14 hrs. Dashed lines show extent of
soft X-ray flare; details in inset: 100-300 keV rate, 4 min LAT data suggesting the
emission begins within 15 min of HXR peak. Dotted curve 1991 June 11 profile. No
2.223 MeV or nuclear line emission during impulsive phase < estimate of >100 MeV
y-rays. Spectral softening observed in protons >300 MeV at Sun. Is the gamma-ray
onset associated with the SEP release time?




00:45 01:00 01:15 01:30
Time (Start at 25-Feb-14 00:30:00)
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>100 MeV time profile of 2014 Feb. 25 event, one of most intense LAT
events. Inset shows high-time resolution rise and fall. Strong nuclear line
radiation during the impulsive phase but no LAT solar exposure. Spectral
softening with time again observed in >300 MeV protons producing gamma
rays. Can estimate >100 MeV gamma-ray emission during impulsive phase
using 2.2 MeV capture line or LLE data where available.
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" Malandraki et al.,
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« How the long-lasting gamma-ray emission is physically related to other radiative
Signatures of eruptive solar flare especially Hard X-rays and radio wavelengths

* AMS/PAMELA provide unigue observations of >300 MeV protons in space, these
are the same energies producing the pion-decay radiation observed by Fermi.

« Search for proxies of proton acceleration that can be used for forecasting
purposes at times when no adequate gamma-ray detectors are available
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HESPERIA Overall Objectives

1. To develop two novel SEP forecasting systems based
upon proven concepts (UMASEP, REleASE)

2. To develop SEP forecasting tools searching for electromagnetic
proxies of the gamma-ray emission in order to predict large SEP
events

3. To perform systematic exploitation of the novel high-energy
gamma-ray observations of the FERMI mission together with

in situ SEP measurements near 1 AU
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Real-time tool for predicting 30-50 MeV > ﬁ
SEP events by using the RELeASE scheme summer =~ .
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This task Is implementing/adapting and evaluating a near-realtime
SEP predictor by using the RELeASE scheme (Posner 2007)

The implemented model will infer the proton time profiles at 30-50
MeV based on both near-relativistic and relativistic electron intensity
time profiles measured by SOHO/EPHIN & ACE/EPAM.
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« Example of
the output of
the
UMASEP
system for
>10 MeV
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Real-time tool for predicting >500 MeV

Integral
proton flux

¢ 10 MeV)

10000

1000

100

SEP threshold: 10

Time (UTC)

X-Ray flux

Magnetic
connectivity
estimation

high
mediur
low

SEP events using UMASEP

|
0:00 Oct 26 12:00 Oct 26 0:00 Oect 27 Warning Level=3

Real-time Forecast:

A SEP event (E>10MaY] The intensity (pfu)at 7 hrs
will probably occur after onset might range
before 20:00 Oct 26, 2002, between 216 and 345,

Model inferences in realtime: Solar
; 7 Region

Earth is well-connected 434

with the solarregion 484

(NO2W38) in which a X1.2

flare has erupted at 18:19.

The figure shows one of

the possible trajectories
of protons from the active
region heliolongitude W38,

Note: During these events
CME-driven shocks also
accelerate paricles. Earth
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v’ The project has started on May 1, 2015 and will last 24 months.
http://hesperia-space.eu

The most significant milestones are planned as follows:

o  The first forecasting results published via the Consortium Server in May 2016

o The results on the SEP simulation modelling for Fermi/LAT events as well as the
inversion software for GLE events will be posted online in October 2016.

o The web-based front-end of the four SEP prediction tools will be released in the
HESPERIA Server in April 2017

v'A scientific Workshop, open to the community, on SEP event analysis will be organised in
Paris end of February 2017.

v'In addition the consortium will provide educational and outreach material on solar
eruptions and space environment on its website
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1. An Introduction to Space weather, M. Moldwin,
Cambridge, UK, 2008

2. Understanding Space Weather and the physics behind
It, by Delores Knipp, edited by M. McYada & D. Kirkpartick,
McGraw Hill Companies, 2011.

3. Managing Radiation Riks In the new era of Space
Exploration, National Research Council, 2008
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4. Space Radiation Hazards and the Vision for Space
Exploration: Report of a Workshop, National Research
Council, 2006

5. Introduction to Space Physics, ed. by Luhmann &
Russel, Cambridge University Press, 2016

6. Baker and Lanzerotti, Space Weather, Am. J. Phys., 84
(3), 2016, (186 references (books, published articles etc)
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STEREO A & B twin spacecraft




Ahead @ +22°/year

S

Behind @ -22°/year

4 yr.




