
GLE Analysis Based on NM Data

Rolf Bütikofer

University of Bern, Switzerland and Foundation High Altitude Research Stations Jungfraujoch and Gornergrat

HESPERIA - Summer School Kiel, 29 August - 2 September 2016

Measurements by Swiss NMs

Plot made by NMDB application NEST

Measurements by Swiss NMs on 20 January 2005

Per CLESS and Impdified - KWite ile Edit View Bookmarks Tools Settings Help Seve As (2 Clase) Undo @ Redo From: "erosh" <erosh@izmiran.ru> To: "Mayromichalaki Eleni" <emayromi@cc.uoa.gr> Cc: "Starodubtsev S.A." <starodub@ikfia.vsn.ru>: "Sdobnov V.E." <sdobnov@iszf.irk.ru>: "Roger Pyle" <pyle@bartol.udel.edu>: "Kryakunova Olga" <krolganik@vandex.ru>; "Karel Kudela" <kkudela@upis.sk>; "Kalevi Mursula" <sclimate@sun3.oulu.fi>; "K. Roehrs" <kroehrs@email.uni-kiel.de>; "Joe H Allen" <Joe.H.Allen@noaa.gov>; "Ilya Usoskin" <ilya.usoskin@oulu.fi>; "Graumann Hugo" <hugo@volt.pjl.ucalgary.ca>; <fskmsp@puknet.puk.ac.za>; "Erwin Flueckiger" <flueckiger@phim.unibe.ch>: "Erwin Flueckiger" <erwin.flueckiger@phim.unibe.ch>; "Erwin Ed" <Edward.H.Erwin@noaa.gov>; "Dorman Lev" <lid@physics.technion.ac.il>: "clifford lopate" <lopate@ulvsses.sr.unh.edu>: "Peggy Ann Shea and Don Smart" <sssrc@msn.com>; "Bieber John" <john@bxclu.bartol.udel.edu> Sent: Thursday, January 20, 2005 08:29 Subject: GLE68! Dear all. there is a new GLE68 ! from the western flare started at 6:36UT with the max at 7:01. It seems to be the greatest in the current cycle. At some stations it is already ~100%! Successes IZMIRAN CR Department

El C069 : mc - Konsole <2> ■ Kwrite

Line: 13 Col: 43 / LINE INS Email

Dear all,

there is a new GLE68 ! from the western flare started at 6:36UT with the max at 7:01.

Jis Infos.dvi - Okular

It seems to be the greatest in the current cycle.

At some stations it is already ~100%!

Successes!

/ LINE INS Email

IZMIRAN CR Department

🐧 🎏 "Book] gnumeric - Gnumeric 🔠 gle69 - Dolphir

---- Original Message ----

From: Marc Duldig

Ble Edit View Message Settings Help

To: Peggy Ann Shea and Don Smart; Erwin Flückiger; Roger Pyle; Harm Moraal

Cc: Ken McCracken

Sent: Thursday, January 20, 2005 5:09 AM

Subject: Huge GLE in progress

Dear Friends

You may already know that there is a huge GLE in progress. Raw eyeball estimate of Mawson data indicates 200% in 1 min data, onset around 6.50 UT.

Oulu shows 225% peak just after 7 UT with smooth decay. Mawson seems to see a second structured peak around 7.20 UT but the pressure correction on the real time quick look data could be suspect.

It is clear in the Jungfrau data.

What a declining phase we are in this time around!

Regards

Marc

43 ∨ 9

43 ∨ 9

Print Reply Forward Trash Create To-do DejaVu Sans

From: Marc Duldig

Ble Edit View Message Settings Help

To: Peggy Ann Shea and Don Smart ; Erwin FIÃ%ckiger ; Roger Pyle ; Harm Moraal

Cc: Ken McCracken

Sent: Thursday, January 20, 2005 5:09 AM

Subject: Huge GLE in progress

Dear Friends

You may already know that there is a huge GLE in progress. Raw eyeball estimate of Mawson data indicates 200% in 1 min data, onset around 6.50 UT.

Oulu shows 225% peak just after 7 UT with smooth decay. Mawson seems to see a second structured peak around 7.20 UT but the pressure correction on the real time quick look data could be suspect.

It is clear in the Jungfrau data.

What a declining phase we are in this time around!

Regards

Marc

---- Original Message ----

From: Marc Duldig

To: Peggy Ann Shea and Don Smart; Erwin Flückiger; Roger Pyle; Harm Moraal

Cc: Ken McCracken

Sent: Thursday, January 20, 2005 5:09 AM

Subject: Huge GLE in progress

Dear Friends

You may already know that there is a huge GLE in progress. Raw eyeball estimate of Mawson data indicates 200% in 1 min data onset around 6.50 UT

Oulu shows 225% peak just after 7 UT with smooth decay. Mawson seems to see a second structured peak around 7.20 UT but the pressure correction on the real time quick look data could be suspect.

It is clear in the Jungfrau data.

What a declining phase we are in this time around!

Regards

Marc

43 ∨ 9

---- Original Message ----

From: Marc Duldig

To: Peggy Ann Shea and Don Smart; Erwin Flückiger; Roger Pyle; Harm Moraal

Cc: Ken McCracken

Sent: Thursday, January 20, 2005 5:09 AM

Subject: Huge GLE in progress

Dear Friends

You may already know that there is a huge GLE in progress. Raw eyeball estimate of Mawson data indicates 200% in 1 min data, onset around 6.50 UT.

Oulu shows 225% peak just after 7 UT with smooth decay. Mawson seems to see a second structured peak around 7.20 UT but the pressure correction on the real time quick look data could be suspect.

It is clear in the Jungfrau data.

What a declining phase we are in this time around!

Regards

Marc

Ele Edit View Message Settings Help

Print Reply Forward Trash Procedure To-do Dejavu Sans
----- Original Message -----

From: Marc Duldig

To: Peggy Ann Shea and Don Smart ; Erwin FIÃ%ckiger ; Roger Pyle ; Harm Moraal

Cc: Ken McCracken

Sent: Thursday, January 20, 2005 5:09 AM

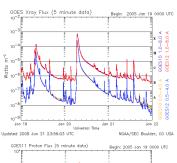
Subject: Huge GLE in progress

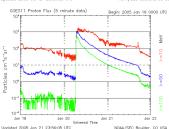
Dear Friends

You may already know that there is a huge GLE in progress. Raw eyeball estimate of Mawson data indicates 200% in 1 min data, onset around 6.50 UT.

Oulu shows 225% peak just after 7 UT with smooth decay. Mawson seems to see a second structured peak around 7.20 UT but the pressure correction on the real time quick look data could be suspect.

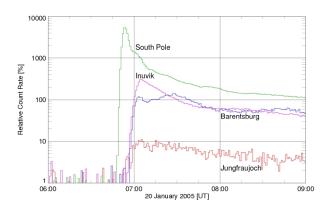
It is clear in the Jungfrau data.

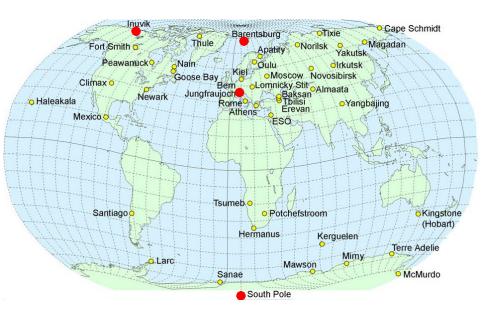

What a declining phase we are in this time around!


Regards

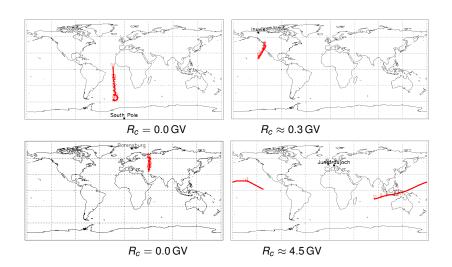
Marc

43 ∨ 9

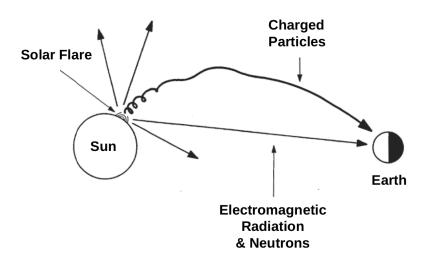

Measurements in space around 20 January 2005



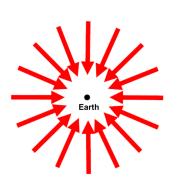
NM data of worldwide network on 20 January 2005

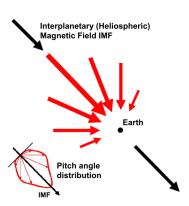


NM stations: Barentsburg, Inuvik, Jungfraujoch, South Pole



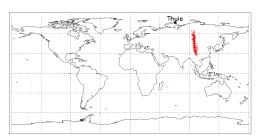
Asymptotic directions

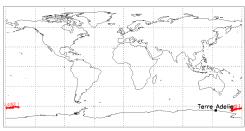

Transport from the Sun to the Earth



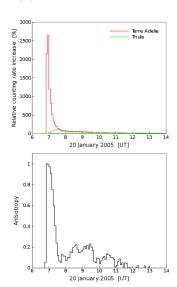
SCR Anisotropy I

GCR

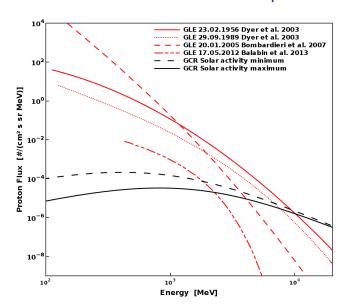




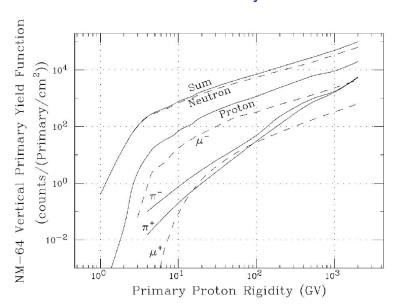
Anisotropy of SCR flux III



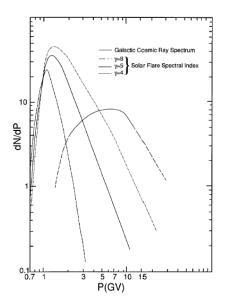
Anisotropy of SCR flux IV


$$A(t) = \frac{\Delta N_1(t) - \Delta N_2(t)}{\Delta N_1(t) + \Delta N_2(t)}$$

where

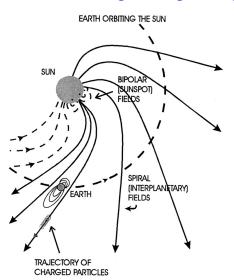

- $\Delta N_1(t)$ Relative count rate increase of NM station 1 at time t
- $\Delta N_2(t)$ Relative count rate increase of NM station 2 at time t

SCR spectrum


NM yield function

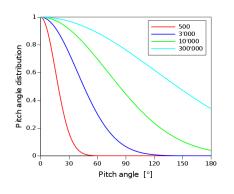
Count rate of a NM station

$$N(t) = A \cdot \int_{P_c}^{\infty} S(P, z) \cdot J(P, t) dP$$


NM response

$$I(R) = A \cdot R^{-\gamma}$$

Incident direction of SCR particles into geomagnetosphere


Differential rigidity spectrum

$$I(R, t) = A(t) \cdot R[GV]^{-(\gamma(t) + \Delta \gamma(t) \cdot (R-1.0))}$$

where

A(t) is given in [m⁻² s⁻¹ sr⁻¹ GV^{-1}] and R in [GV]

Pitch angle distribution

$$F(\vartheta) = e^{-rac{artheta^2}{F_{par}}}$$

where

θ

pitch angle in [°] Fpar

parameter describing the pitch angle distribution

NM count rate change during GLE

$$\Delta N(t) = \sum_{R_c}^{\infty} S(R) \cdot I(R, t) \cdot F(\delta(R), t) \cdot \Delta R$$

where

R_c effective vertical cutoff rigidity

S(R) yield function

I(R, t) solar particle intensity

 $F(\delta(R), t)$ pitch angle distribution of solar particles

 $\delta(R)$ angular distance between direction of vertically incident particles at the NM and direction of IMF near Earth

4D > 4P > 4E > 4E > 900

Determination of SCR characteristics based on NM data

By comapring the calculated, ΔN^{mod} , and the measured, ΔN^{meas} , of selected NM stations the solar cosmic ray characteristics (spectrum, direction of anisotropy, and pitch angle distribution) can be determined by a trial and error procedure:

$$\sum_{i} \left(\Delta N_{i}^{mod} - \Delta N_{i}^{meas} \right)^{2} = minimal$$