CUDA Tutorial 00

What is CUDA and how may it serve
you?

Martin A. Kruse - July 2013

This document is part of a series of tutorials intended for the people at the
extraterrestrial physics research group at the Christian Albrechts Universitét
zu Kiel. Everyone else is invited to use and distribute (as is) these documents,

however the computers mentioned here are not available to the public.

The full series of tutorials can be found online at
http://www.ieap.uni-kiel.de/et /people/kruse/,
though access to this site later than 2026 might

be impossible due to thermonuclear war.

Suggestions and corrections are very welcome at kruse@physik.uni-kiel.de.


http://www.ieap.uni-kiel.de/et/people/kruse/
mailto:kruse@physik.uni-kiel.de

The short answer to the question above: CUDA is a computational framework which utilizes the
processing power of NVIDIA’s graphics cards and makes their infrastructure (partially) available to
the programmer by very simple extensions of high-level programming languages (C/C++, Fortran,
Python). If you are somewhat familiar with one or more of these languages, programming CUDA
devices is a piece of cake.

Computations in computer graphics involve a great number of arithmetic calcutations with few
to no need to execute divergent instructions (few if-statements). This fact resulted in graphics
processing units with many (up to a few thousand) relatively slow lightweight arithmetical logical
units compared to the heavy and very fast units found in standard CPUs. There are many applica-
tions outside of computer graphics which can utilize that architecture efficiently, and many physics
applications can be sped up significantly with CUDA.

The rule of thumb: If you have a great deal of calculations that can be done mostly independently
from each other, you might want to consider programming with CUDA. A very good example is
the evaluation of a few equations on hundreds or thousands of grid points as in computational fluid
dynamics. Another is the simulation of many particle systems.

In this tutorial you will find an introduction to CUDA and the underlying architecture of graphics
cards. It will be relatively simple so that you have a good idea what CUDA is and how you
might utilize it in your applications without going to much into detail. If you are interested in a
more complete introduction, I recommend getting familiar with the “Get Started” ressources from
NVIDIA (https://developer.nvidia.com/get-started-cuda-cc). The link directs you to the ressources
concerning C/C++, which will also be used during these tutorials. Somewhere on that site you will
find ressources for Fortran and Python as well.

1 The guts of your graphics card

Your graphics card is an extension of your PC which is responsible for creating the visual experience
you encounter when using your computer. Everything you see on your monitor, apart from the
boot process or your terminal-only session, is brought to you by your graphics card. The purpose
of the graphics processing unit (GPU) is to relieve the central processing unit (CPU) by utilizing
specialized hardware adapt to graphics processing. Consider your graphics card as a specialized
computer insider your universal computer, the PC.

From now on, only NVIDIA GPUs are considered as CUDA is a NVIDIA-specific platform. The
hardware in other vendors’ graphics cards are very similar, though some parts have different names.
The GPU is composed of a small number of so called Streaming Multiprocessors (SMs), whiche house
the arithmetic units, the CUDA cores. Every graphics card has its own memory (RAM or VRAM),
which is typically situated near the GPU itself. Communication is possible between the CPU and
GPU as well as between the RAM of the PC (the host) and the graphics card (the device). Figure
1 depicts this paradigm.

1.1 Streaming Multiprocessor

For the programmer, the Streaming Multiprocessor is probably the most interesing hardware com-
ponent of the device. It consists of a number of arithmetic (CUDA) cores, which do the actual
computations, on-chip (shared) memory, memory controllers for access to off-chip (global) memory,
local and very fast (register) memory, schedulers for the great number of threads to be managed and
a bunch of other components which are of minor interest for this introduction. For all intents and
purposes, you can consider a SM as a computer of its own. The exact number of components of one
such SM is dependant on the compute capability of the device (see the following section), and the
number of SMs on one device varies. For instance, on one of the GTX Titans which are resident in
our CUDA computer Prometheus, there are 14 SMs (for some marketing reasons dubbed SMX by
NVIDIA) as depicted in figure 2.


https://developer.nvidia.com/get-started-cuda-cc

Do stuff to data

send datato device *

Do highly parallel
manipulations to data
{e.g Yector calculus, grid

update,...)
Fetch datafrom device .
Do more stuff to data
PCI-Express Bus
CPU / host GPU / device

Figure 1. CUDA generic program flow

Instruction Cache
Warp Scheduler ‘Warp Scheduler ‘Warp Scheduler Warp Scheduler
Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch Dispatch
+ + + + ks L 4 4+

Register File (65,536 x 32-bit)

R E
SFU Core

Core
Core
Core
Core
Core
Core

Core

Core
Core
Core
Core
Core
Core
Core
Core

Core

(]
:

Core

Core

Core

Core

Core

Core

PEEEEE

ST Core Core

Interconnect Network
64 KB Shared Memory / L1 Cache

48 KB Read-Only Data Cache

Figure 2. Kepler architecture (compute capability 3.x) Streaming Multiprocessor (from NVIDIA Kepler Whitepaper).



Compute capability
. . . 1.0 2.1 3.0 3.5

Architectural specifications (per SM) G8x/Cox Fermi Kepler Kepler
Num.ber of.mteger and single-precision 8 48 192
floating-point cores
Number of single-precision special 9 3 39
function units (Sine, Cosine, etc.)
Number of double-precision

. . 64
floating-point cores
Number of warp schedulers 1 1 4
Number of instructions 1 9
issued at once by scheduler

Technical specifications

Maximum number of threads per block 512 1024
Number of blocks per SM 16
Number of warps per SM 24 48 64
Number of threads per SM 768 1536 2048
Number of 32-bit registers per SM 8K 32K 64K
Maximum number of 32-bit registers per thread 128 63 255
Maximum amount of shared memory per SM 16KB 48KB

Table 1. Major differences between select compute capabilities.
examples of chip codenames with that capability.

The names under the compute capabilities give

1.2 Compute capability

The first CUDA software development kit (SDK) was released in 2007. As you can imagine, the
hardware has changed significantly since then. To accomodate such changes, NVIDIA has introduced
the paradigm of compute capabilities, which classify graphics cards according to their hardware setup.
The fact that each graphics card has one of just a few (mostly backwards compatible) compute
capabilities makes it easy for the programmer to develop software for a wide range of devices. For
most CUDA programmers, this means that only two main factors have to be considered when
writing software: The compute capability of the device and the number of SMs on it. Wikipedia has
a very good summary of what distinguishes the different compute capabilities (http://en.wikipedia.
org/wiki/CUDA), the most important ones for us are repeated in table 1. You do not have to
understand the ramifications of this table yet. Just return here (or better: to Wikipedia) when
questions regarding the compute capability arise.

If not stated otherwise, all values given during these turorials refer to compute capability 3.5 as
this is what the GTX Titan supports and what is relevant for developing our software.

2 When you should utilize the power of your graphics card... and when better not to

The worlds second fastest supercomputer (as of June 2013) at the Oak Ridge National Laboratoy
named Titan utilizes a great number of NVIDIA Tesla cards, which are almost identical to the


http://en.wikipedia.org/wiki/CUDA
http://en.wikipedia.org/wiki/CUDA

consumer graphics card GTX Titan (hence the name) built in our CUDA computer Prometheus.
It seems that graphics cards are a good choice for coping with high performance computing (HPC)
tasks. As you will see, this statement is somewhat but not unconditionally true. Some examples
where CUDA might do some good have been named in the introduction. Let us take a look at an
example, where a CUDA implementation will be much slower than a standard CPU implementation:
The numerical integration along a one-dimensional grid.

Let r; denote the position of the i-th grid point starting at ¢ = 0 (going up to, say, i = 1,000), x
and y two arbitrary quantities to be evaluated at the grid points (where they will be referred to as
z; and y;) and an analytical expression linking these two quantities:

y:/xdr

With a boundary condition at r = rg and known values for = at all grid points, this equation can
be solved numerically (introducing some error, of course) by moving along the grid from left to right
and computing

Yit1 = Yi + Ti(rig1 — 1)

After 1,000 of these steps, the values y; are computed at every single grid point. However simple,
this calculation can not be sped up with CUDA enabled graphics cards. The reason is very easy
to understand: There is no way to compute y; o without computing y;41 first. You might have
thousands of compution cores at your disposal, this task can utilize only one core efficiently.

However, if you had many of these grids, say, n = 10,000, then you could work upon the grids in
parallel, while each grid for itself would be processed sequentially. In this case, CUDA will speed up
things significantly.

Fortunately, most of our computing tasks here at the institute feature independent calculation
steps, hence CUDA might help you here and there. If you have read this far and still ask yourself
if CUDA programming can help you speed up things, I am inclined to answer you with a definite
“YES!”.

3 Where to next?

The next few tutorials (with the number 01) will be concerned with organizational stuff like program-
ming languages (Python, C/C++), operating systems (Windows, Linux), a GPU emulator called
“Ocelot” and our CUDA computer Prometheus on which you can test and run your programs. None
of these tutorials will go deeper into CUDA programming itself.

If you are interested in more about what can be done with CUDA without programming along,
just skip the following sessions and keep on reading the tutorial with the number 02.

If you wish to lern CUDA programming, I recommend getting familiar with the 01-tutorials
concerned with your developing enviroment. If you want to develop complex programs utilizing
CUDA, T strongly recommend programming in C/C++ because of better performance of the
resulting programs and because I have some experience I can share. On the other hand, fast
prototyping is more easily done utilizing Python, so if you just want to speed up specific parts of
your program (e.g. multiplication of large matrices), that can be implemented very fast using the
Pyhton packages avialable for CUDA. See tutorial 01p for more on this topic.

Prometheus is set up with all necessary Python and C/C++ packages, so go ahead with whatever
suits your needs best. The CUDA paradigm is independent of the specific programming languages.



	The guts of your graphics card
	Streaming Multiprocessor
	Compute capability

	When you should utilize the power of your graphics card... and when better not to
	Where to next?

