CUDA Tutorial 02

Your first CUDA program

Martin A. Kruse - Februrary 2014

This document is part of a series of tutorials intended for the people at the
extraterrestrial physics research group at the Christian Albrechts Universitét
zu Kiel. Everyone else is invited to use and distribute (as is) these documents,

however the computers mentioned here are not available to the public.

The full series of tutorials can be found online at
http://www.ieap.uni-kiel.de/et /people/kruse/,
though access to this site later than 2026 might

be impossible due to thermonuclear war.

Suggestions and corrections are very welcome at kruse@physik.uni-kiel.de.


http://www.ieap.uni-kiel.de/et/people/kruse/
mailto:kruse@physik.uni-kiel.de

Before diving into the specifics of how to use your graphics card efficiently, this session is meant
to show you just how simple getting started with CUDA really is. With the advent of CUDA 6.0,
even more barriers standing in the way of beginners fall. If you are familiar with any programming
language like C, getting CUDA devices to work is ridiculously easy.

In this tutorial, we will program a function that creates an array of numbers and than increments
each number in that array. This might not be a very useful utilization of computing power, but it
depicts how CUDA devices work and what purposes they are able to fulfill.

1 How to build programs

As in all tutorial session, the source code presented here can be found as an archive in the header of
this document. You may download and build it using the Makefile or you copy (and adjust to your
liking) the source code from this document and follow the build instructions.

2 The really simple version

Please consider the following source code:

#include <cuda.h>
#include <cuda_runtime.h>
#include <stdio.h>

// this is the program that is to be run on the device for a

// large number of threads, in our example 100

// each thread takes care of one entry in the number array,

// so in order for the thread to know which number to manipulate,
// a scheme has to be utilized in order to assign each thread a
// unique number

__global__ void incrementArrayViaCUDAdevice(int *numberArray, int N)

{
// this is the assignment of a unique identifier.
// blockIdx.x is the unique number of the block, in which the
// thread is positioned, blockDim.x holds the number of threads
// for each block and threadIdx.x is the number of the thread in
// this block.
int idx = blockIdx.x*blockDim.x + threadIdx.x;
// this tells the thread to manipulate the assigned number in
// the array stored in device memory and increment it
if (idx<N)

numberArray[idx] = numberArray[idx] + 1;
}

// this is the "normal" function to be run on the CPU
// it does the exact same thing as the CUDA function above
void incrementArray(int *numberArray, int N){

// go through every number in the array consecutively
// and increment it
for(int i=0; i<N; ++i)
{
numberArray[i] = numberArray[i] + 1;
}
}

int main(int argc, const charx argv[] )
{

// some arbitrary array length

int numberOfNumbers = 100;



// declare some arrays for storing numbers
int *numbersl, *numbers2;

// reserve (allocate) some working space for the numbers in device memory
cudaMallocManaged (&umbersl, sizeof(int)*numberOfNumbers);
cudaMallocManaged (&umbers2, sizeof(int)*xnumberOfNumbers);

// fill the input array with some numbers
for(int i=0;i<numberOfNumbers;i++)

{
numbersl[i] = i; // this will be manipulated by the CUDA device (GPU)
numbers2[i] = i; // this will be manipulated by the CPU (as any standard C program would
do)
}

// tell the device (GPU) to do its magic
incrementArrayViaCUDAdevice<<<1l, numberQOfNumbers>>>(numbersl, numberOfNumbers);

// wait for the device to finish working
cudaDeviceSynchronize();

// compute the same function "normally" on the CPU
incrementArray(numbers2, numberOfNumbers);

// check if the GPU did the same as the CPU
bool workedCorrectly = true;
for(int i=0;i<numberO0fNumbers;i++)
{
if (numbersl[i] != numbers2[i])
workedCorrectly = 0;

}

if (workedCorrectly == 1)
printf("The_device_performed_well!\n");
ellse
printf("Something_went_wrong._The_output _numbers_are_not_what_was_to_be_expected...\n");

// free the space that has been used by our arrays so that
// other programs might use it

cudaFree(numbersl);

cudaFree(numbers2);

return 0;

As in all C programs, execution starts at the main function. After defining an array length
(numberOfNumbers = 100), we tell the CUDA framework that we would like to have two arrays
(numbersl and numbers2) in unified memory. Unified memory is a construct introduced in CUDA
6.0, which simply states that the graphics processing unit (GPU - your graphics card) as well as
the central processing unit (CPU) shall have access to the entries stored in it. Do not bother about
this for now, the next tutorial will tell you more about it. For now, just know that this command
(cudaMallocManaged) gives you some space in memory to work with.

Now we have to initialize our arrays with some number so we can start working on them. The
loop just fills the arrays with incrementing numbers.

The task to fulfill is to increment each and every number in the arrays, so we tell the GPU to do
that with the array numbersl and the CPU do do the same with array numbers2.

Note that the function calls are very similar. The CUDA function (also called a kernel) needs
some more information, which is passed to it inside the « <»>-brackets, namely the number of blocks
we wish to invoke (here: 1) and the number of threads per block (here: numberOfNumbers = 100).
Again, do not bother right now, just use one block with as many threads as you like.



If you take a look at the top of the file you will find the two functions we just called. The CUDA
version (the kernel) is marked with the keyword _ global . Note that both these functions
are very similar. The CPU version contains a for-loop, which iterates through all the elements
consecutively.

You will notice that the CUDA kernel only manipulates one element of the array, namely that
at position idx. This is because the kernel is invoked numberOfNumber(100) times, once for each
element. This means that for each element, one thread is utilized to do the work. The first line in
the kernel tells the thread which element in the array it has to work with. The identifiers blockldx.x,
blockDim.x and threadldx are given by the CUDA framework an tell the thread, in which block it
is positioned, how wide the block is and which position inside the block it occupies, respectively.

After performing operations on both our arrays, the main function checks if both arrays are
identical and tells you, if that is indeed true.

So let’s go on an see how this program performs.

3 Compile and run the program

Save the source code from the previous section in a file called "main_really_simple.cu", open a
terminal and navigate to the folder where you stored it. As we have two different processing units
involved, we need two compilers in order to build our programs. The "normal" C/C++-compiler on
Unix-like systems is called gce (Gnu Compiler Collection). As for CUDA devices, NVIDIA created
a compiler called nvce (NVIDIA CUDA compiler). The following two lines create our program from
source code:

nvcc -c main_really_simple.cu -arch=sm_20
gcc main_really_simple.o -o main_really_simple -L/usr/local/cuda-6.0/1ib64 -lcudart -lcuda

Or, if you downloaded the archive and extracted it, you might use make (by typing exactly that
in the terminal).
The only thing left to do is to run that program:

./main_really_simple

And that’s it! You just passed beyond the most complicated aspect of developing CUDA programs:
You convinced yourself that it might be worth looking at.

Now give yourself a pat on the shoulder and go on to the next lesson. Or try changing the value
of numberOfNumbers and run the program again. For which numbers does it work? When does it
fail? Why is that? Hint: I told you in the very first lesson...



	How to build programs
	The really simple version
	Compile and run the program

