

Status and operations of the external exposure facilities EXPOSE-E and EXPOSE-R on ISS

Elke Rabbow, Corinna Panitz, Andrea L'Afflitto, Günther Reitz

EXPOSE - History

- 1997 AO for "Externally mounted payloads for 1st utilization phase" in 2002 by ESA
- EXPOSE (experiment) originally planned for SEBA Space Exposure Biology Assembly
- Proposal "ROSE" for EXPOSE with 9 biological experiments + 2 chemical experiments
- Acceptance of ROSE with 6 biological experiments + 2 chemical experiments
- Withdrawal of Brasilian participation, change of position from SEBA to EuTEF for EXPOSE
- Due to Space Shuttle accidents and Columbus delay, now on
- EXPOSE-R on Russian ZVEZDA module (engineering model), originally scheduled for launch in 2006

ROSE Experiments on EXPOSE (1st Batch)

Experiment	original	PI	current	PI
ROSE 1	SUVEMCA	D.D. Wynn-Williams	ENDO	C. Cockell
ROSE 2	OSMO	R.L. Mancinelli	OSMO	R.L. Mancinelli
ROSE 3	SPORES	G. Horneck	SPORES	G. Horneck
ROSE 4	PHOTO	J. Cadet	PHOTO	J. Cadet
ROSE 5	SUBTIL	N. Munakata	SUBTIL	N. Munakata
ROSE 6	LUX	S. Kozubeck	/	/
ROSE 7	Dosimeters	T. Ohnishi	/	/
ROSE 8	PUR	G. Ronto	PUR	G. Ronto
ROSE 9	SEEDS	L.V. Nevzgodina	/	/
			Russian	V. Sychev
OC	AMINO	A. Brack	AMINO (SEEDS)	H. Cottin D. Tepfer
OC	ORGANIC	P. Ehrenfreund	ORGANIC	P. Ehrenfreund

Deutsches Zentrum

DLR für Luft- und Raumfahrt e.V.
in der Helmholtz-Gemeinschaft

EXPOSE - History

- Acceptance of ROSE with 6 biological experiments + 2 chemical experiments
- Withdrawal of Brasilian participation, change of position from SEBA to EuTEF for EXPOSE
- Due to Space Shuttle accidents and Columbus delay, now on
- EXPOSE-R on Russian ZVEZDA module (engineering model), originally scheduled for launch in 2006
- Today: ROSE with 6 biological experiments + 2 chemical experiments + additional Russian participation, currently scheduled for launch with Progress in November 2008 due to delay of contract

In the meantime, Shuttles are back to flight

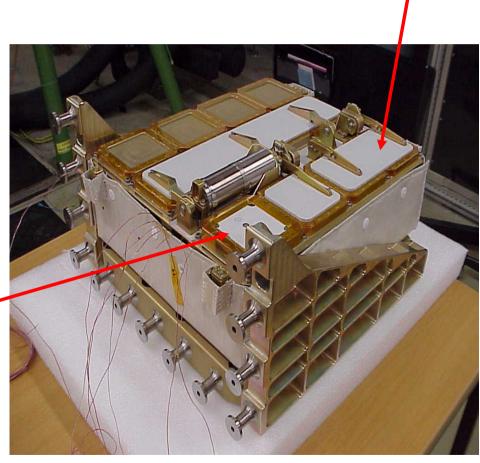
2004 AO for 2nd Batch of EXPOSE Experiments, for EuTEF platform on Columbus

Experiments on EXPOSE 2nd Batch (AO 2004)

	Candidate Experiments	PI
AO-2004-099	Plant SEEDS Panspermia Experiment	D. Tepfer
AO-2004-146	PROCESS Experiment	H. Cottin
AO-2004-148	PROTECT Experiment	G. Horneck
AO 2004-149	ADAPT Experiment	P. Rettberg
AO-2004-150	LIFE Experiment	S. Onofri

EXPOSE –R and -E Experiment requirements

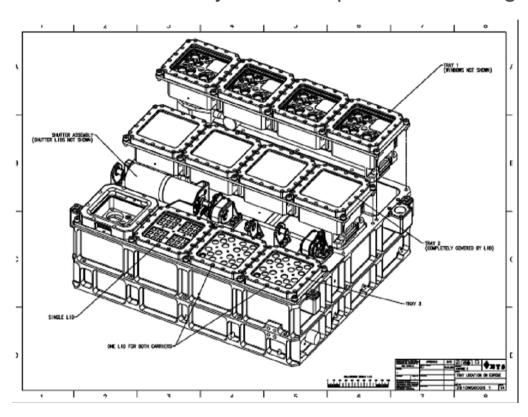
- Extraterrestrial solar and galactic radiation
- Vacuum (approximately 10⁻⁴ Pa near ISS)
- Simulated Mars atmosphere (-E) or Argon atmosphere (-R)
- UV-radiation (extraterrestrial radiation cannot be simulated accurately)
- Except for R3D, all experiments require
 - passive exposure to the selected space parameters and
 - return of the samples to Earth for analysis

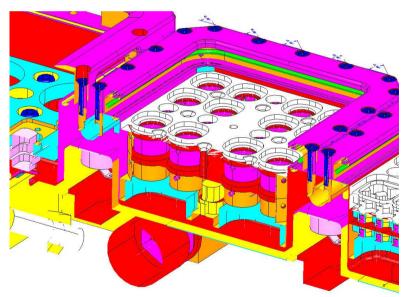

Therefore the external platforms on ISS provide ideal exposure conditions for the investigations of the scientific groups in EXPOSE –R and -E

EXPOSE Facility

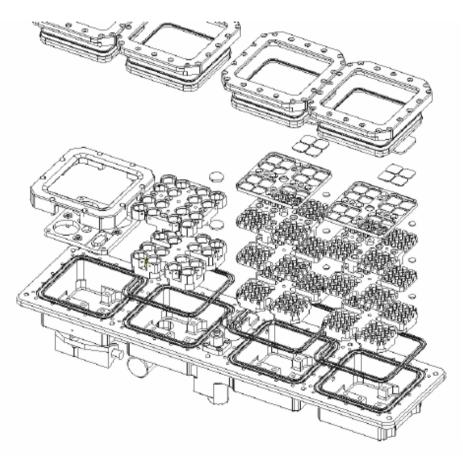
3 Trays
4 Compartments
each
Experiments
biological
chemical
radiometrical

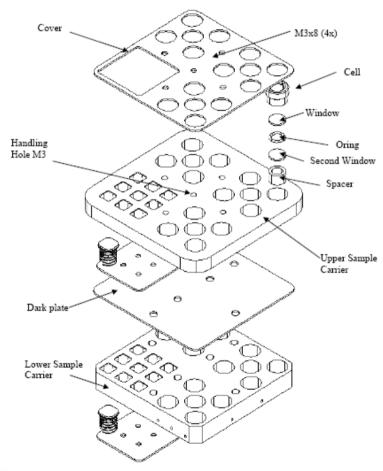
R3D 3-1




Lid

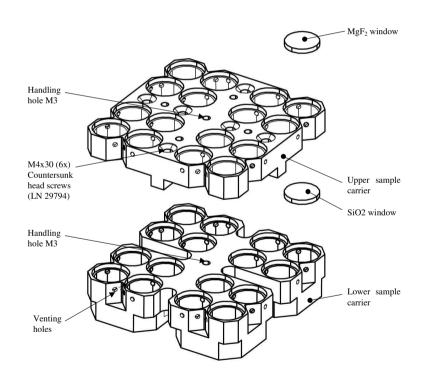
EXPOSE Experiment HW

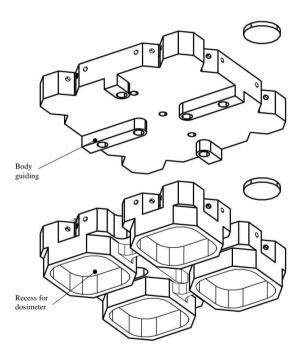

Tray- and Sample Carrier Design -E



EXPOSE Experiment HW

Sample Carrier Design Trays – R,





EXPOSE Experiment HW

Sample Carrier Design Trays – E, 1 and 2

EXPOSE – R Preflight Test Programm

- 5 EVTs performed at DLR plus
- 1 additional biocompatibility Test performed for Russian experiments
- EST performed at DLR for all ROSE experiment HW
- EST for chemical experiment, Russian experiment and SEEDs HW for -R (Tray 1)
 - pending -
- Additional exposure to simulated space parameters during EST for sample testing purposes provided

Will be presented by Corinna Panitz for SPORES

EXPOSE – R Preflight Test Programm

EVT-R1 18.07.02 - 30.07.02

Vacuum 7 x 10⁻⁵ Pa

Vacuum 10⁻⁵ Pa

Temperature 40°C, 1 atm air

UV irradiation, monochromatic 254 nm, 1 atm air Fluences:

> 10 Jm⁻² 100 Jm⁻² 1000 Jm⁻²

ROSE 1,3,5,8

EVT-R2 12.02.03 - 26.03.03

Temperature limit 60°C Argon 1 atm Vacuum 1,7 x 10⁻⁵ Pa

Temperature limit -80°C Vacuum 1,7 x 10⁻⁵ Pa

Temperature oscillation 50 cycles, -20°C to + 20°C, Argon 1 atm Vacuum 1,7 x 10⁻⁵ Pa

ROSE 2,3,5,8

EVT-R 3 23.10.03 - 12.11.03 12.02.04 - 03.03.04

Vacuum 8 x 10⁻⁵ Pa Argon 1 atm + UV irradiation, polychromatic 200-400 nm Fluences: (ND Filter)

> 3,33 x 10³ kJm⁻². 33 kJm⁻². 333 Jm⁻². 3 Jm⁻²

Temperature 20°C, 0°C during irradiation

ROSE 1,2,3,5,8

EVT-R 4 30.05.05 - 23.06.05 29.11.05 - 19.12.05

Vacuum 1,1 x 10⁻⁴ Pa Argon 1 atm + UV irradiation, Deuterium lamp > 160 nm Fluences: (ND Filter)

2,6 x 10² kJm⁻². 26 kJm⁻². 260 Jm⁻². 2,6 Jm⁻²

Temperature 20°C, 10°C during irradiation

ROSE 3,5,8

EVT-R 5 14.07.06 - 23.08.06

Vacuum 1,1 x 10⁻⁴ Pa Argon 1 atm + UV irradiation, polychromatic 200-400 nm Fluences: (ND Filter)

> 9,1 x 10⁴ kJm⁻². 9,1 x 10² kJm⁻². 9,1 kJm⁻². 91 Jm⁻²

UV irradiation,

Deuterium lamp > 160 nm Fluences: (ND Filter)

83 kJm⁻². 830 Jm⁻². 8,3 Jm⁻². 0,08 Jm⁻²

Temperature 20°C, 10°C during irradiation

ROSE 1,2,3,4,5,8

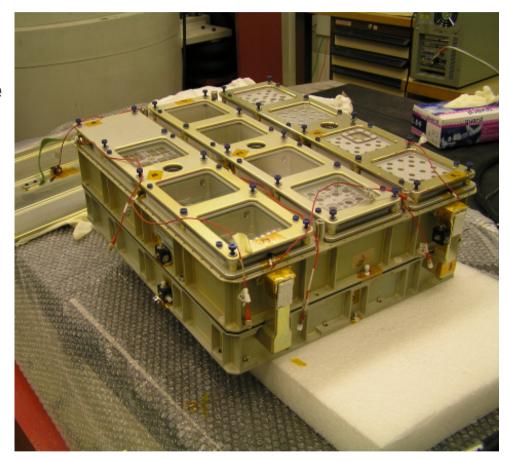
Control experiment,

1 atm air, dark, room temperature

EXPOSE – R Preflight Test Programm - EST

EXPOSE – R Mission Sample Integration

- Currently, HW ready and tested
- Integration of Flight and Mission Ground Reference Sample at DLR ongoing
 - Samples from PIs requested and partly received
 - Available HW ready for integration


Final number of samples for Flight:

Biological: 1062

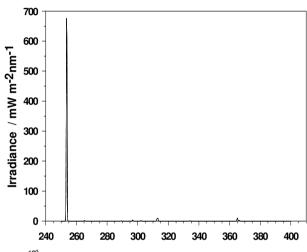
Chemical: 130

Dosimetrical: 27

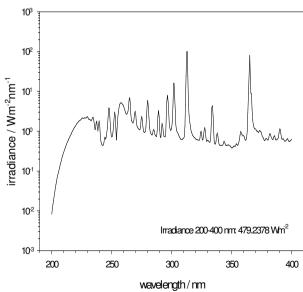
Total Flight + Ground: 1219 \times 2 = 2438

Experiments on EXPOSE 2nd Batch (AO 2004)

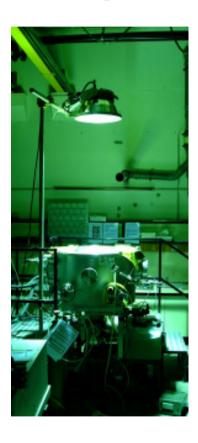
	Accepted	I Experiments	PI
AO-2004-099	Plant SEE Experime	EDS Panspermia nt	D. Tepfer
AO-2004-146	PROCES	S Experiment	H. Cottin
AO-2004-148	PROTEC	T Experiment	G. Horneck
AO 2004-149	ADAPT	Experiment	P. Rettberg
AO-2004-150	LIFE	Experiment	S. Onofri
	DOSIS / DOBIES		G. Reitz / F. Vanhavere
	R3D-E		DP. Häder



EXPOSE – E Preflight Test Programm


EVT 1: PSI 6

EVT 1: Hg-Low pressure Lamp



EVT 1: SOL2000

EXPOSE-E EVTs:

EVT 2: PSI 2

EVT-E 1 05.09.06 - 26.09.06

Vacuum 10⁻⁵. Pa

Vacuum 10⁻⁵ Pa

Temperature oscillation 50 cycles, -20°C to + 20°C, 1 atm air

UV irradiation, monochromatic 254 nm, 1 atm air Fluences:

> 10 Jm⁻² 100 Jm⁻² 1000 Jm⁻²

UV irradiation, polychromatic 200-400 nm, 1 atm air Fluences:

> 1.5 kJm⁻² 1.5 x10³ kJm⁻² 1.5 x10⁵ kJm⁻²

EVT- E 2 09.10.06 - 05.01.07

Vacuum 10⁻⁵ Pa + UV irradiation, polychromatic 200-400 nm, Fluence:

> 1.5 x 10⁵ kJm⁻² 1.5 x 10² kJm⁻²

Simulated CO₂ Mars atmosphere 600 Pa + UV irradiation, polychromatic 200-400 nm, Fluence:

1.5 x 10⁵ kJm⁻² 1.5 x 10² kJm⁻²

Control experiment,

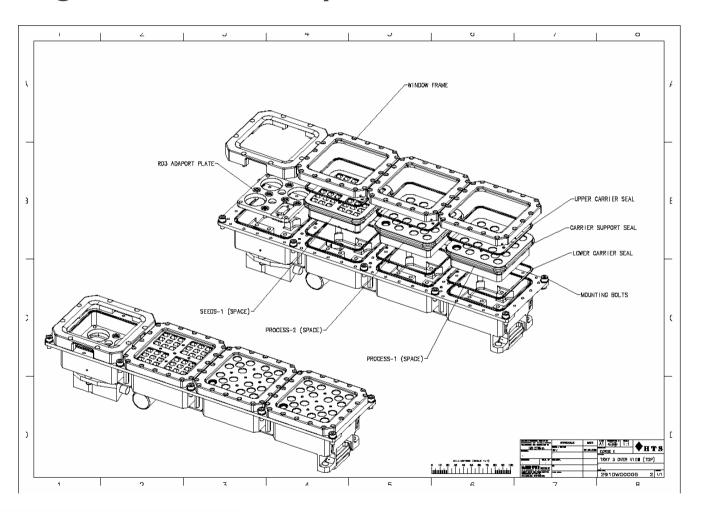
1 atm air, dark, room temperature

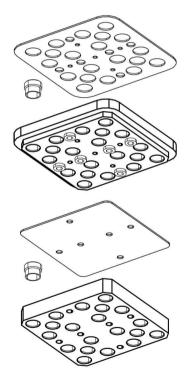
EXPOSE-E EVTs:

Experiment	DC	Vacuu	ım	Temp cycles	254 nm J/m ³		200-400 nm kJ/m²		/m³	
		1h	1 week	50	10	100	1000	1,5	1,5x10*	1,5x10*
40407										
ADAPT 168 wt	3x	3×	3x	3×	3x	3x	3x	3×	3x	3x
168 new	3x	3x	3×	3x	3x	3x	3×	3x	3×	3x
Anabaena 1 No	7.	1	4	7	10	13	16	19	22	25
2 No	1	2	5	8	11	14	17	20	23	47
3 No	1	3	6	9	12	15	18	21	24	27
Halo Helga	3x	3x	3x	7.	3x	3x	3x	3x	3x	3x
PROTECT										
168 wt	3x	3x	3x	3x	3x	3x	3×	3x	3x	3x
168 wt Alu	30	3x 3x	3x 3x	3x	3x 3x	3x 3x	3x 3x	3x 3x	3x 3x	3x 3x
8 atroph 8 pumilus	3x	3x	3x	3x 3x	3x	3x	3x	3x	3x	3x
a punitus	ax.	ax.	ax.	1 OW) dix	ax.	ax.	i ax	ax.	ax.
UFE										
123	J.	J.	6x	3к	3x	3x	3x	J.	J.	J.
134	J.	S.	3x	6x	3x	3x	3×	1.	5.	J.
CM 1 - 1 N a	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2
2 No	1.3	1.2	1.2	1.2	1.1	1.1	1.2	1.1	1.1	1.2 1.1
3 No	1.4	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1	
CA 1 - 1 No	1.1	1.1	1.1	1.1	1.4	1.4	1.4	1.4	1.4	1.4
2 No 3 No	1.1	1.4	1.4	1.4	1.1	1.3	1.1	1.1	1.3	1.3
CA 2 - 1 No	2.2	2.3	2.2	22	2.4	2.4	2.4	2.4	2.4	2.4
2 No	2.2	2.2	2.4	2.4	2.2	2.2	2.4	2.2	2.2	2.4
3 No	2.4	2.4	2.4	2.4	2.2	2.2	2.2	2.2	2.2	2.2
CR 1 - 1 No	3.	1.1	1.10	7.	1.6	1.5	1.4	1.7	1.8	1.9
2 No	J.	1.2	1.12	7.	J.	J.	.1.	1.	J.	J.
3 No	J.	1.3	J.	7.	1.	5.	.t.	1.	5.	J.
CR 2 - 1 No	2.11	5.	J.	2.2	2.6	2.5	2.4	2.7	2.8	2.9
2 No	2.12	J.	2.9	2.3	J.	J.	d.	1.	S.	J.
3 No	J.	J.	J.	2.10	1.	J	d	1.	5.	J
CR 3 - 1 No	3.35	3.25	3.22	3.19	3.1	3.6	3.7	3.28	3.31	3.34
2 No 3 No	3.36	3.26	3.23	3.20	3.2	3.5	3.8	3.11	3.30	3.36 3.37
Apth X ele	Rest	1disc	1 disc	1 disc	1 disc	1disc	1 disc	1disc	1 disc	1 disc
Myco X ele	Rest	1disc	1 disc	1 disc	1 disc	1disc	1 disc	1disc	1 disc	1 disc
Apot R geo	Rest	1disc	1 disc	1 disc	1 disc	1disc	1 disc	1disc	1 disc	1 disc
	11000									
SEEDS										
A. thaliana TT4	J.	5.	J.	1.	J.	J.	.t.	3.	S.	S No.1
A. thal. Ler-0	1.	5.	J.	7.	1.	5.	.1.	1.	5.	S No.2
A. thal. WS	J.	J.	J.	7.	1.	J.	d.	7.	J.	S No.3
N.tabacum	J.	J.	J.	4	1.	J.	d.	1.	J.	S No.4
B. napus	5	5	35	4	5	5	-t-	5	5.	S No.5
Flavonoids	J.	J.	5.	I.	1.2	J.	.t.	1.	J	S Na.6

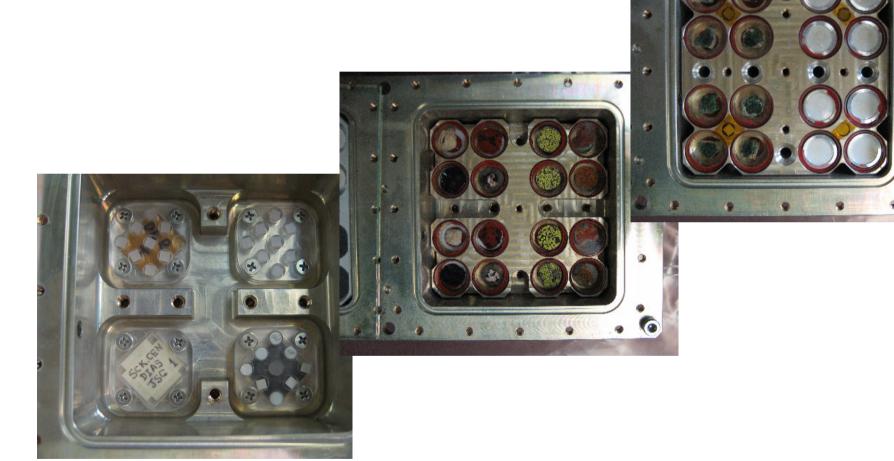
EVT 1

EVT 2

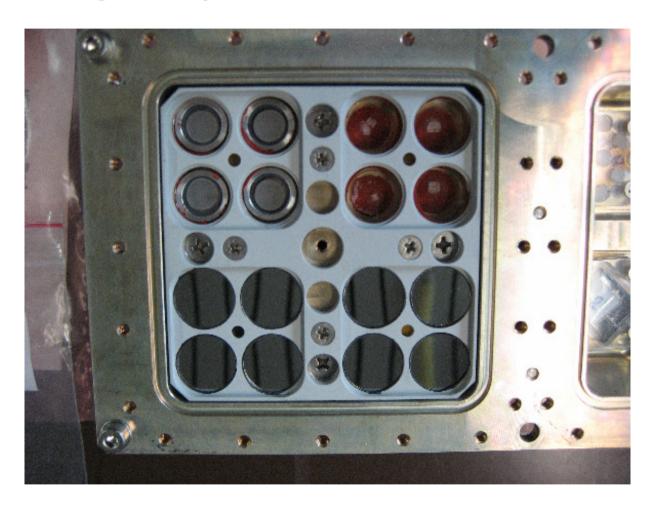

Experim ent	Vacuum	Vacuum	MARS CO ₂	MARS CO ₂
	dark	200-400 nm J/m ²	dark	200-400 nm kJ/m²
ADAPT				
168 wt 10 ⁸	3x	3x	3x	3x stacks
168 wt 10 ⁸	3x	3x	3x	3x stacks
168 new	3x	3x	Ĵ.	J.
Anabaena 1 No	34	37	28	31
2 No	35	38	29	32
3 No	36	39	30	33
Halo Helga	3x	3x	3x	3x
PROTECT				The selection
168 wt 10"	3x	3x 3x	3x	3x stacks
168 wt 10 ⁸			3x	3x stacks
168 wt Alu B abroph	3x 3x	3x 3x	3 on 1 3x	3 on 1 3x
B pumilus	3x	3x	3x	3x
a parmas	20.	un.	- Lan	W.
UFE				
123	1.	J.	3к	3x
134	1.	1.	3x	3×
CM 1 - 1 No	1.1	1.1	1.1	1.1
2 No	1.1	1.1	1.1	1.1
3 No	1.1	1.1	1,1	1,1
4 No CA 1 – 1 No	1.1	1.2 1.1	1.1	1.1
2 No	1.1	1.1	1.3	1.3
3 No	1.1	1.1	1.4	1.4
4 No	1.3	1.3	7.	1.
5 No	1.4	1.4	Ĵ.	j.
CA 2 - 1 No	2.4	2.4	2.4	2.4
2 No	2.4	2.4	2.4	2.4
3 No	2.4	2.4	2.4	2.4
CR 1 - 1 No	1.	1.	J.	J.
2 No	1.	J.	J.	J.
3 No	4.	1.	4.	J.
CR 2 - 1 No	4	1.	4	J.
2 No 3 No	1.	<i>J.</i> <i>J.</i>	J.	1.
CR 3 – 1 No	3.44	3.42	3.38	3.40
2 No	3.45	3.43	3.39	3.41
3 No	1.	3.46	1.	1.
LF1 -1 No	1.4	1.4	Ĵ.	Ĵ.
2 No	1.5	1.5	J.	J.
3 No	1.6	1.6	J.	J.
4 No	1.7	1.7	J.	J.
5 No	1.9	1.9	J.	J.
Apth X ele	1 disc	1 disc	1 disc	1 disc
Myco X ele	1 disc	1 disc	1 disc	1 disc
Apot R geo	1 disc	1 disc	1 disc	1 disc
0.5500				
SEEDS	7 N - 77		E N - 1 -	E 11 - 12
A. thaliana TT4 A. thaliana Ler	S No.33 S No.34	S No.31 S No.32	S No.15 S No.17	S N a.12 S N a.10
A. Biana ia LCI	D NO.34	D NO.32	D NU. II	2140.10

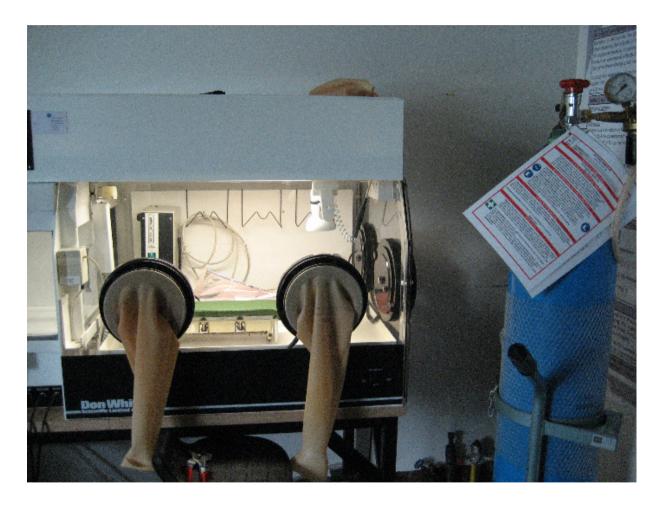


EXPOSE-E: EST


EST parameter						
Exposure Experiment	Exposure Experiment performed:					
Duration		Start	End	Duration	Exposition	
Vacuum 10 ⁻⁵ Pa	1 week	23.04.07, 14:00	03.05.07 11:00	10 days	3 x 10 ⁻⁴ Pa	
CO ₂ atmosphere 600 Pa	1 week	20.04.07 14:00	03.05.07 11:00	13 days	610 Pa	
Temperature < 60°C		23.04.07	27.04.07		max. 57°C	
UV irradiation, polychromatic 200-400 nm, Fluences: As much as possible, max: 1,5x10 ⁵ kJm ⁻²	86 h 56 m 37 s	23.04.07 14:00	27.04.07 9:00	86 h 56 m 00 s	479,2 Wm ⁻² 1,5x10 ⁵ kJm ⁻²	

EXPOSE-E Mission PreparationFlight / Ground Sample Accommodation – launch 6.12.07



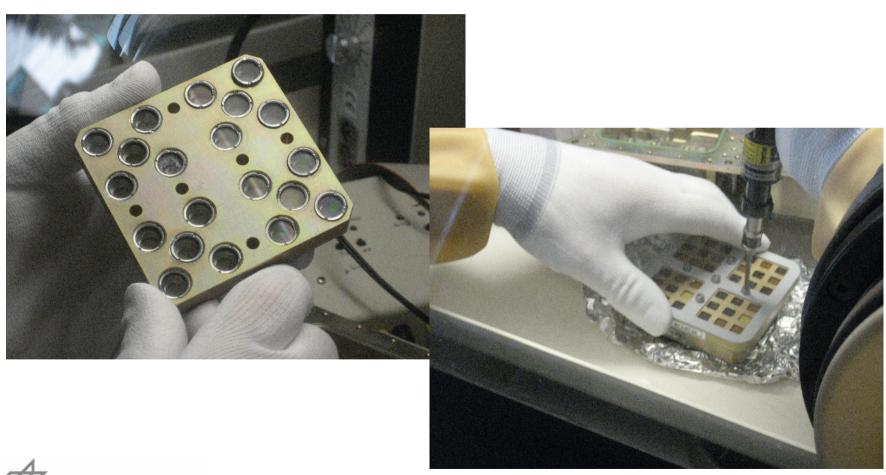

Integration carrier in Tray 1 – here Dosis, LIFE, ADAPT/ PROTECT

Filter frame mounted - here ADAPT

Tray with protection in $\mathrm{N_2}$ / $\mathrm{CO_2}$ -workbench

2 O-rings for the top window, 3rd in window frame...

...Window and Window Frame - here ADAPT



Tray 2 closed (in air, exchanged to 10 mbar CO₂ to remain in Tray 2)

EXPOSE FM: Sample Carrier Tray 3 PRCESS + SEEDS

R3D, PROCESS and SEEDS carrier integrated in N₂

EXPOSE-E Trays Shipping

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

EXPOSE-E Facility Commanding and Data at MUSC

Flight Operations:

- Check Out and Comissioning
 - •Commanding of lids (-E only) and valves
- Data retrieval on the following parameters

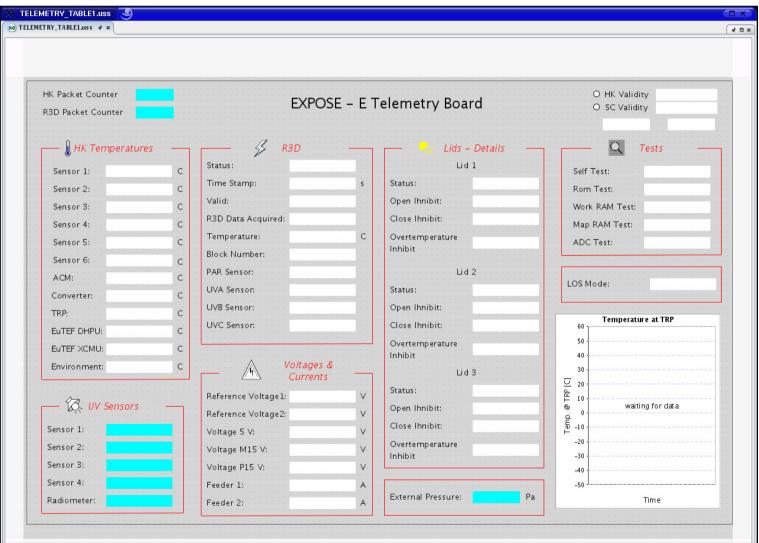
Pressure:

•Status of the valves, decrease of pressure in EXPOSE trays

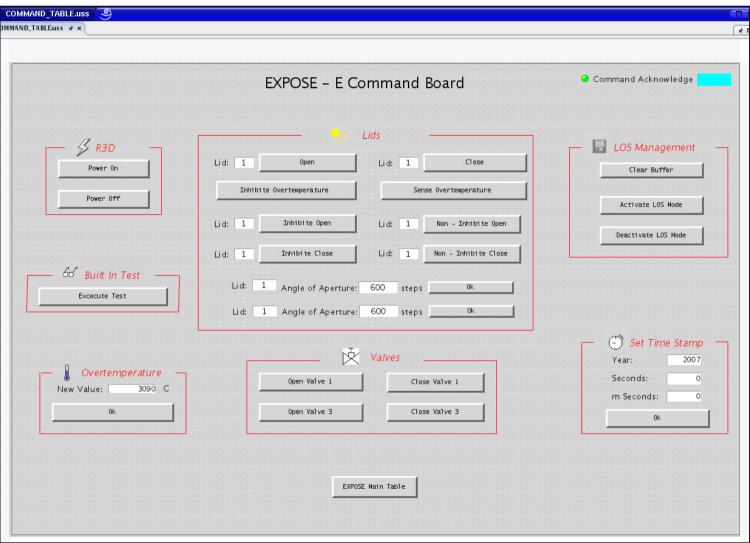
Solar extraterrestrial UV and ionizing radiation:

- Status of lids (-E only)
- Data of 4 UV sensors and one radiometer on trays near irradiated sample surface
- Experimental data from R3D

Temperature:


- •Data of 6 temperature sensors at attached near samples
- •2 Housekeeping temperatures

All data available by telemetry and available to Pls / Ground Reference on FTP-Server



EXPOSE-E Data

EXPOSE-E Commanding

EXPOSE-E Status Mission Start

Flight HW was transported to Cape Canaveral and Integrated on the European Technology Exposure platform EuTEF

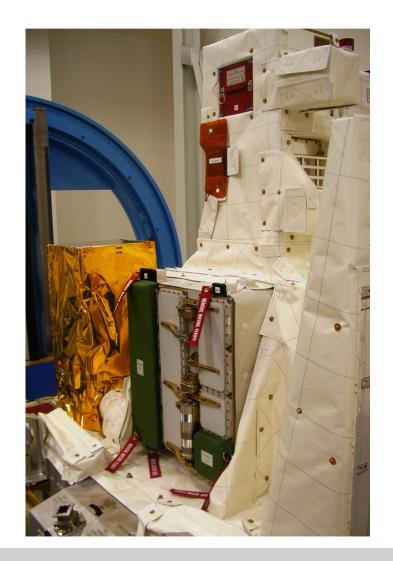
EuTEF was integrated into the Shuttle bay

Atlantis STS 122 was transported to launch pad A39 for launch on December 6th 2007

Launch was delayed due to fuel sensor malfunction

EXPOSE-E Status

Integrated on EuTEF


Flight Model Number of samples:

Biological: 328 Chemical: 80 Dosimetrical: 64 Total: 472

+ Ground

Total: 944

EXPOSE-E Status

STS 122 Roll out

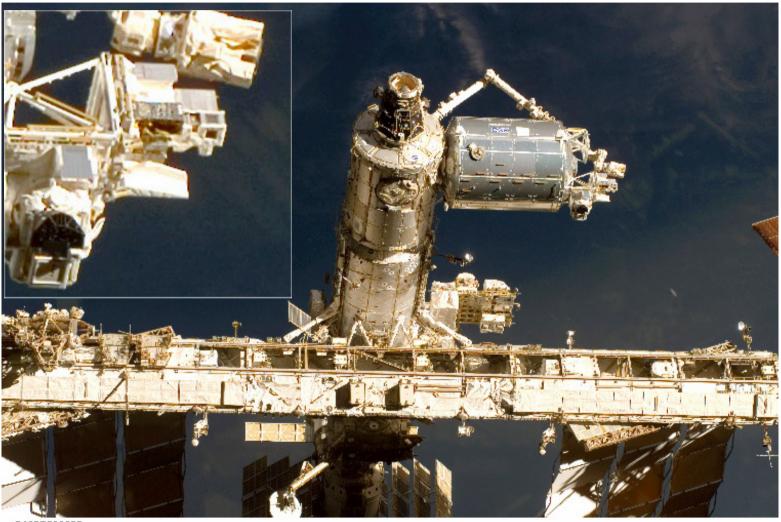
EXPOSE-E launch successful February 7th, 2008

EXPOSE-E - Final Destination on Columbus

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Similar to EXPOSE-E -

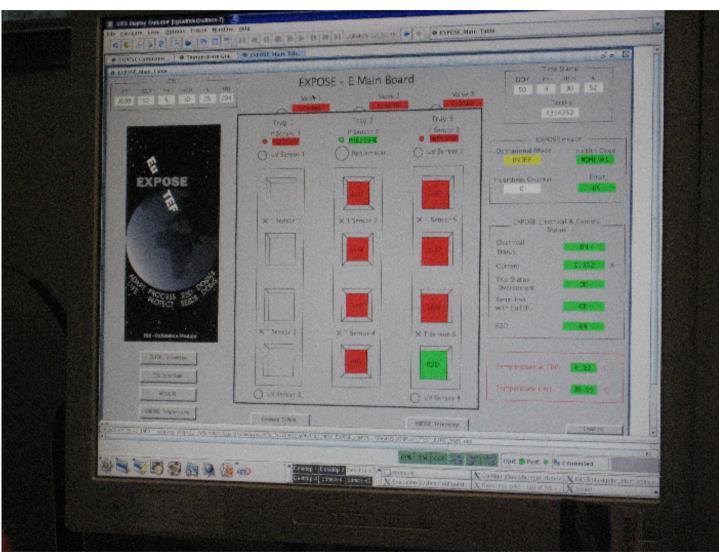
N₂ on its way to Columbus by Rex Walheim



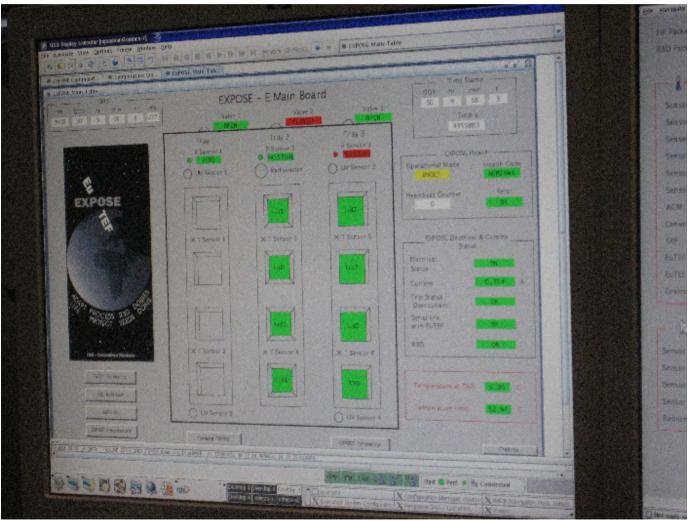
S122E008149

Deutsches Zentrum
für Luft- und Raumfahrt e.V.
in der Helmholtz-Gemeinschaft

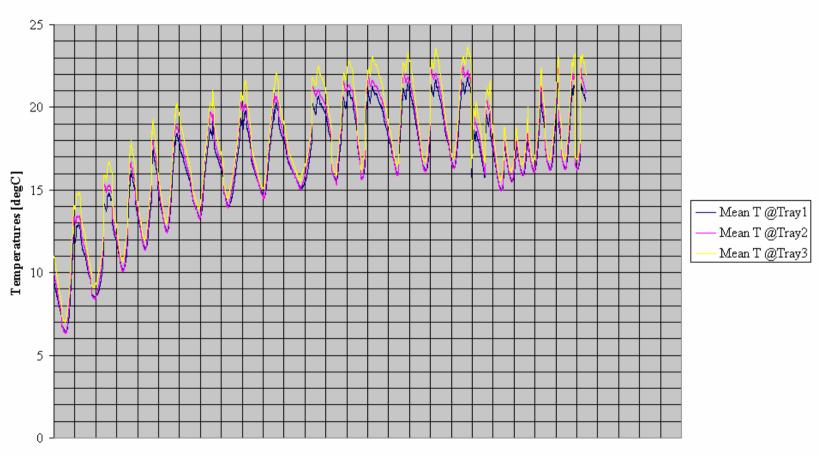
EXPOSE-E – On EuTEF on Columbus



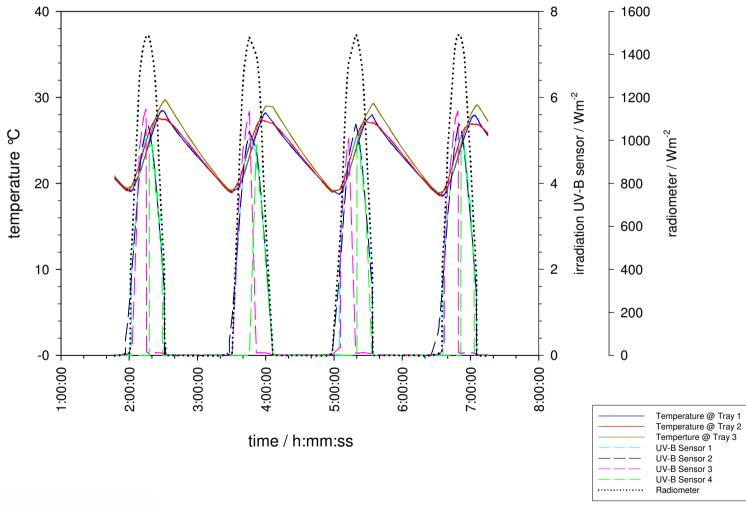
EXPOSE-E - COORD at MUSC DLR Control Room



EXPOSE-E – Check Out and Commissioning....


EXPOSE-E -....successful!

EXPOSE-E – Data - Temperature


Temperatures at Trays Since 2008-02-20T12:30:07 To 2008-02-22T00:59:57

EXPOSE-E – Mission Data – UV + Temperature

temperature and UV-B and radiation graph 2008-03-10

EXPOSE-E – Virtual Control Room

http://www.go.dlr.de/musc/expose/telemetrie.php

Thank you!

