

HighRad on BIOPAN 6, Foton M3

C. Queau¹, M.C. Ciobanu¹, A. Guigo¹, <u>D. Prieur¹</u>, U. Pogoda de la Vega², <u>E. Rabbow²</u>, R. Möller², P. Rettberg², T. Douki³, J. Cadet³

Lab. de microbiologie des environnements extrêmes UMR 6197, Brest, France
 DLR, Institute of Aerospace Medicine, Radiation Biology, Köln, Germany
 Lab. 'Lésions des Acides Nucléiques', CEA-Grenoble, France

Questions addressed by HighRad

- Can highly radiation resistant non-spore forming microorganisms like the Archeon *Thermococcus gammatolerans* and the Bacterium *Deinococcus radiodurans* survive under space conditions concerning extreme desiccation by space vacuum and simulated Martian UV radiation characterized by biologically deleterious energy-rich short UV wavelengths not existing on present Earth?
- Are there toxic and/or phototoxic effects of Martian soil analogues on these organisms under space conditions?
- What is the spectrum of UV-induced DNA photoproducts after exposure to space conditions?

Resistance to ionizing radiation

Part 1: Thermococcus gammatolerans

- Most radioresistant hyperthermophilic archaeon known to date
- Growth temperature: 55 °C 95 °C (optimal at 88 °C)
- Optimal pH: 6
- Optimal NaCl concentration: 20 g/l
- G+C mol% = 54,5
- Strictly anaerobic
- Chemoorganotrophic
- Yeast extract, tryptone and peptone as carbon and energy sources for growth
- Elementar sulphur or cystein required for growth

Thermococcus gammatolerans

Pre-tests for the planned flight experiment

- Desiccation test: no survival
- Optimal conditions of lyophilisation:
 - mineral medium (growth medium without organic components)
 - Stationary growth phase
 - 10¹⁰ cells/vial
 - Survival: 40% in average
- Oxygen sensitivity: only 50% survival after 1 day of exposure

UV exposure experiments at DLR

2 independent experiments with 5 replicates each

Results

fluences	gro	owth (+) or n	o growth (-)	for 5 replic	ates	
50 J/m ²	+	+	+	+	+	Exp 1
	+	+	+	-	-	Exp 2
100 J/m ²	+	+	+	+	+	Exp 1
	+	+	+	-	-	Exp 2
1000 J/m ²	+	+	-	-	-	Exp 1
	+	+	-	-	-	Exp 2
5000 J/m ²	+	+	+	-	-	Exp 1
	+	+	+	-	-	Exp 2

UVC radiation (254 nm)

SEM of lyophilized *Thermococcus gammatolerans*

The HighRad sample carrier for exposure to space conditions

Conclusions from the pre-tests with Thermococcus gammatolerans

- Thermoccocus gammatolerans resists to lyophilisation (cold temperature, vacuum), but it is then very sensitive to oxygen.
- The cell deposit procedure does not allow to estimate the cell density on the discs prior to UV exposure or to obtain a monolayer of cells.
- However, perhaps because of the protection given by multilayers of cells, lyophilized cells of *Thermococcus gammatolerans* seem to resist to UV doses up to 5000 J/m².
- For the FOTON M-3 flight experiment only cells of *Deinococcus* radiodurans were used.

Part 2: Deinococcus radiodurans

gram positive
complex cell wall
pigmented
chemoorganotroph
generation time about 80 min
temperature optimum 30 ℃
no spore former
non mobile
occurs mainly in tetrads and
diplococci
genome sequenced

- desiccation resistant resistant against oxidative and cross-linking agents
- extremely radiation resistant (ionising and UV radiation)

Sample preparation

 immobilization of 1 x 10⁷ Deinococcus radiodurans cfu's mixed with 0.3 mg of the Martian soil analogue MRS07

MRS07:47.7 % Montmorillonite, 9.9 % Kaolinit, 21.3 % Hematite (+ SiO $_2$), 13.0 % Anhydrite, 7.1 % Magnesiumsulfate, 1.0 % Sodiumchloride, 58 wt% of the minerals grainsize < 2 μ m, 42 wt% ~ 0.2 mm

- 1 set of samples for
 - UV + vacuum exposure in space
 - vacuum exposure in space
- flight, ground, laboratory controls storage at ambient T and at 4 ℃

HighRad Mission Biopan 6 on Foton M3

Launch 14.09.2007 in Baikonur Landing 26.09.2007 in Kasachstan

HighRad results Survival

- Deinococcus radiodurans cells did not survive the exposure to space vacuum and simulated Martian UV radiation (8.729 MJ/m²,~ 22 SCh).
- Deinococcus radiodurans cells were inactivated by space vacuum by a factor of ~ 10.
- Comparable results were obtained in the ground simulation experiment.

DNA analysis - photoproducts

Mass spectrogram of the standards of the different UV-induced pyrimidine dimers

HighRad results DNA photoproducts

- Simulated Martian UV radiation induced the different types of pyrimidine dimers.
- The main photoproduct is 6-4 TC.
- Comparable results were obtained in the ground simulation experiment.

ground

Thank you for your attention!

