Solar Orbiter
HET/EPT Digital FPGA

Stephan 1. Bottcher

SVN Revision 8147
Date 2020-12-03 21:53:06 40100 (Do, 03 Dez 2020)
Document code: SO-EPD-KIE-DA-0001 Issue 1 Rev 0.3

Contents
1 Introduction

2 Mode of Operation
2.1 Data Acquisition
2.2 Data Checkout, .
2.3 Slow Control
2.4 Command Messages
2.4.1 Serial Commands via LVDS
2.4.2 PPS scheduled messages
2.5 Master Control Message
2.6 Link to the Analog Board
2.6.1 Command Messages to the Analog Board
2.6.2 Analog Board Responses
2.6.3 Analog Frontend Control
2.6.4 Analog Trigger Event Data.
2.6.5 High Speed Calibration Mode

3 Telemetry packets
3.1 Serial Packet Format
3.2 Register Readout
3.2.1 Status and Error Registers
3.2.2 Address Registers
3.2.3 Modulus Timer Registers

3.2.4 UART Status 15

3.2.5 Heater Registers 16
3.3 Histogram Data 0. 16
3.3.1 Data Product Scheduler 17
3.3.2 Data Compression 18
3.3.3 Unencoded Data 19
3.4 Memory Readout oL 19
3.4.1 External SRAM 20
3.4.2 EEPROM Readout 21
3.4.3 Configuration Table Readout 21
3.4.4 Counter Readout 21
3.4.5 Memory Index Registers 22
3.5 Frontend Readout 26
3.5.1 Analog Readout Items 26
3.5.2 Analog Housekeeping 27
3.5.3 Temperature Capture 27
3.54 Peeking Lo 27
3.5.5 Single Channel Trigger Counters. 28
3.6 L2 Streamingo 28
3.6.1 Samples Readout 28
3.7 Monitoring Parameters 28
3.7.1 Register readout L. 29
3.7.2 Histogram Data 29
3.7.3 Counter Memory Readout 30
3.7.4 HET-EPT Analog Frontend Readout 30
Data Acquisition 31
4.1 Pulse Height Data Packets 32
4.1.1 Event Packet Reception 33
4.1.2 L3 Event Class 34
4.1.3 'Trigger and Prescale Counters 35
4.2 Event Buffer o 35
4.2.1 Feeding the L3 trigger processor 35
422 PHA storage 36
4.2.3 Test Data Injection 37
4.2.4 Event Data Formats 37
4.3 L3 trigger 37
4.3.1 HIST Instruction 39
4.3.2 PHA Instruction 39
4.4 Streaming modeo 39
4.5 Sample Mode 39

4.6 Timestamp Clock

Operational Heater

5.1 Heater Modes of Operation
Count Rate Series Compression
6.1 Histogram Windows
6.2 Counter Cadence
6.3 Compression Unit L.
6.3.1 Encoder
6.3.2 Basic Encoder Operations
6.3.3 Cadence Sequence without Compression
6.3.4 Compression Sequence
6.3.5 Compression Sequence with Summing
6.3.6 Encoding scheduler,
6.4 Encoding Format
6.4.1 Encoding in Full Poisson Resolution.
6.4.2 Encoding with Drop=3
6.4.3 Decoding
6.44 NaN
EEPROM
7.1 EEPROM Page Write
7.1.1 PageUpload.,
7.1.2 Page Write 0oL
713 AccessTime
Inputs and Outputs
8.1 Power
82 Theclocks
82.1 TODO
8.3 ICU Asynchronous Serial Link
8.3.1 ICU Cold Redundancy
8.3.2 Driver Enable L.
8.3.3 LVDS Termination
8.4 Synchronous Serial Ports
8.4.1 Termination oL
85 Memory Bus. o
8.5.1 Engineering Model Memory
8.5.2 Engineering Model 2 Memory
8.5.3 Engineering Model 1 Memory

8.6 PWMoutput 58
8.7 Device Pinouts 58
9 Implementation Details 58
9.1 External Memory Access 58
9.1.1 Memory Port to Arbitration Unit Interface 59
9.1.2 Memory Driver Interface 59
9.1.3 Memory drivers 59
9.14 Memory Port 60
9.1.5 Memory Port Priorities 61
9.1.6 Memory EDAC 61
9.2 UART 62
9.2.1 Baud Rate Generator 62
9.2.2 Abort Sequence 63
9.2.3 PPSReceiver 63
9.3 Serializer/Deserializero 64
10 Changelog 64
List of Tables
1 Digital Board Counters, frontend L2 triggers 22
2 Digital Board Counters, SEU Errors. 23
3 Digital Board Counters, communication 23
4 Digital Board, Trigger Counters 24
) Digital Board, UART 24
6 Analog Housekeeping Readings 27
7 Parameters to extract from the register readout packet. Offset
is in bytes, length isin bits. 29
8 Frontend parameters 31
9 Event Pulse Height Packet Format 32
10 L3 Data Set Format 33
11 L3 instruction opcodes L. 38
12 Sample Packet Format 40
13 Cadence Modulus Table. 43
14 Encoding Format without Drop 48
15 Encoding Format with Drop=3 49
16 Input and Output Ports 52
17 Engineering to Flight Mapping of Memory Ports Y

List of Figures

1 Proposed LvDS Termination Circuit
2 LV-PECL Termination Schematic .

1 Introduction

The HET/EPT sensor employs two FPGAs, one each on the analog and the
digital boards. The FPGA on the analog board will control the ADCs, perform
digital filtering, L1 and L2 trigger processing, and housekeeping acquisition.

The digital board FPGA is described in this document.

PHA Format

HETEPTDIG

——i"" MTX |‘
™€ | serialiser

—J

BACKEND

PPS schedule

<1 MEM Driver

MEM-ARBITER

Telemetry
FIFO

Register
{]
{

Operational
Pwm

heater
control

I
Conenar Strobes/Enables Telemetry
Message

Addresses

MESSAGE

[Telemetry |AFOHUART 7|
{UART Px|

T

[Telemetry |
CFE - awred

2 Mode of Operation

The operations of the FPGA are grouped in three threads of execution:

1. data acquisition,

2. data checkout, and

3. slow control.

—_
SRAM 512k x 32

ICU LVDS

All functions are controlled via command messages and a Pulse Per Second
(pPS) signal. Both command messages and PPS signals can be received from

the 1cu and generated autonomously in the FPGA.

During nominal operation, the PPS is received once per second from the
1CU and the necessary command messages are generated inside the FPGA
synchronized to the PPS. No command messages from the ICU are required
during nominal operation.

Command messages for configuration and slow control need to be send
by the 1CU via LVDS serial communication.

2.1 Data Acquisition

Data acquisition involves
1. reception of event data packets from the analog FPGA,
2. buffering (up to four packets),
3. L3 trigger processing,
4. histogram counting, and
5. PHA data storage.

Histograms and PHA data are stored in the external SRAM. The storage areas
are double buffered, one buffer for acquisition and one being checked out for
telemetry.

Once configured and enabled, the data acquisition operates completely
autonomously.

2.2 Data Checkout

In parallel to the data acquisition, the checkout proceeds from data acquired
previously. The execution of the checkout is controlled by a command table
in the PPs scheduler. The scheduled tasks include

e starting and stopping data acquisition between acquisition periods,
e switch buffers between acquisitions,

e perform analog housekeeping acquisitions and telemetry,

e send counters and other status housekeeping,

e send PHA data buffers,

e kick the operational heater,

e reconfigure the frontend, to clear out SEU,

e calculate and send histogram data telemetry.

2.3 Slow Control

Once configured and operational, there shall be no or very little commanding
of the sensor from the 1cU. Tasks that may arise during operation include

e changing trigger parameters,

e initiate diagnostic telemetry, or
e writing new data into the EEPROM.

Writing into configuration memory to tune trigger parameters should be safe
at any time as long as the changes do not change the trigger algorithm and
leave the trigger operational between all writes. The analog frontend con-
figuration is not normally changed directly, but stored in the PPS scheduler
and updated once per second between acquisitions.

Diagnostic telemetry must not be initiated during telemetry checkout,
else the data streams collide and garbage is emitted. The PPS schedule shall
include spots that are reserved for synchronous actions, like EEPROM page
write or diagnostic telemetry. The command to execute the action will be
written into reserved slots in PPS schedule table. A further entry in the table
will automatically clear the command message from the table after is was
emitted, so it will be executed only once.

Writing EEPROM pages is safe as long as the memory port occupation
does not interfere. EEPROM access is rather slow and blocks the external
memory bus. The execution of the EEPROM page write shall be synchro-
nized to the PPSs schedule.

2.4 Command Messages

A command message includes three items:
e an address (14 bit),
e a size tag (2 bits), and
e a data word (64 bits).

The address identifies the recipient of the message. The size tag indicates
how many bits shall be interpreted from the data word:

0: zero bits,
1: 16 bits,
2: 32 bits, or
3: 64 bits.

Most recipients ignore the size tag and just accept as much of the data word
as they need. Bits beyond the indicated size are expected to be zero.

2.4.1 Serial Commands via LVDS

Messages are received from the ICU via LVDS signaling through a UART op-
erating at 115200 baud. The serial message format is specific to the Kiel

sensor units:

0x3c3d
sz <address>

| | | | | | | | | |
Sdotp>, (o> =

<data> (<sz> =
| N I I Ny iy |

)
)
<data> (<sz> > 2)
)

<data> (<sz> > 1
| A T A A M|

<crc>
I I Il

The CRC is computed according to the following parameters as defined in
http://www.ross.net/crc/download/crc_v3.txt

WIDTH = 16
POLY = 0x 1021
INIT = Ox ffff
REFOUT = 0
REFIN =0

XOROUT = 0x 0000

Only as many data words are transmitted as indicated by the <sz> tag. The
received message data is padded to the left with zeros to fill 64 bits. Word
and byte ordering is big endian.

2.4.2 PPS scheduled messages

The PPS scheduler emits messages that are indistinguishable from serially
received messages, i.e., the recipients cannot tell where they came from.
There is only one difference: the pPPS scheduler can emit data words with
nonzero bits beyond the indicated size. That should not matter, because
those recipients that do look at the size tag ignore the data beyond the
indicated size.

2.5 Master Control Message

A message to address 0x 0000 issues strobesgs. These are simple command
pulses to trigger some action or effect. Most of the strobes set or clear
enablesg Or confsig bits, so these act more like master control registers.
strobesgs[23:16] set the corresponding bits in enabless. strobesgy[31:24]
clear those bits. A bit that is both to be set and cleared will be toggled.

Similarly, strobesgs[47:32] set, and strobesgs[63:48] clear bits in confsig.
Most bits in confsig are unused.

Command message:

3| L xooo0]

SIetl CIOILI"I;S]_ﬁ 1 1 1 1 1 |

|
| clr c?nflslp |
L.

Clr enab1e38| | |S’|at|en|ablles|8| | 1 Iacltilon'|58| 1 | | TPsetss | |

2.6 Link to the Analog Board

Communication between the digital board FPGA and the analog board FPGA
goes over synchronous serial links, with a data and a clock signal for each
direction, with LvDS signaling. The clock frequency is 48 MHz. The clock
towards the analog board is used as the master clock of the analog FPGA.
The serial links employ 20-bit frames to transfer 16-bit words over two
channels. Two bits provide a synchronization edge, one bit selects the chan-
nel, one bit can be used for line balancing, but here it is just toggled for each

frame. . .
Synchronous serieal link frames:

|1|0|Z|C| | I S I I<Idalltal>l

Bit ¢ is zero for control channel data and one for stream channel data. When
no data is to be sent, the link transfers a control message of zero. When the
i bit is set, all the remaining bits of the frame are inverted. A stream of con-
trol messages zero will include exactly one falling edge per frame, regardless
of the i-bit. Link synchronization can always be immediately recovered when
the link is idle.

These links provide four channels, two in each direction, which operate
all independently.

Control Digital to Analog: Enables and strobes,
Stream Digital to Analog: command messages,
Control Analog to Digital: status and configuration readback, and

Stream Analog to Digital: data acquisition.

2.6.1 Command Messages to the Analog Board

Command messages can be sent to the analog board FPGA via the stream
channel. The messages complies to the IRENA command format, with 14

10

address bits and none or 16 data bits.

Analog Board Command Message
1]p[0]0,0,0, | | goddressy
 datar

The <data> frame is only present when the p bit is set. The analog board
responds to a subset of the address range with 10 valid address bits, and four
most significant bits zero.

There are two ways to generate messages to the analog board, either with
the command message described here, or with an analog readback command
described in section 3.5.

Command message:

|<sz>|0 100 <address> |

| | | | | | | | | | | | |

| <data 3> | <data 2> |
| |

| <data 1> | <data 0> |
| |

If the command has <sz>=0, a message without data is sent. Otherwise the
command data is send in multiple messages to consecutive addresses on the
analog board. The word ordering is little endian.

2.6.2 Analog Board Responses

When the analog board returns data in response to a command messages,
the data is sent through the control channel, using two frames per 16-bit
data word. Each returned word is prefixed with a fixed header. This allows
to distinguish data words with content zero from the idle link.

The analog board returns data only when it receives an analog readback
command described in section 3.5.

2.6.3 Analog Frontend Control

The control channel to the analog board is used to send states and strobes.
The channel can support up to 15 state bits and up to 15 strobes.

When a strobe needs to be sent, a control word is sent with the most
significant data bit zero, and the strobe set in the corresponding bit position.

astrobesig[1]|=strobesgs[14]: random, trigger,
astrobesig[3]|=strobesg[3]: timestamp clock reset,

astrobesig[13]=strobesgs[4]: readback FIFO reset,

11

astrobesig[14]=strobesgs[5]: data FIFO reset.

Every few microseconds, the digital board will send a control message with
the most significant data bit set. The remaining bits are enable bits which
will be latched by the analog board to control is operations.

astates;g[0]=enablesg[5]: analog master enable,
astatesjg[1l]=confsig[1]: samples mode enable,
astates;g[3]=enablesg[4]: timestamp clock enable,
astates;g[13]=conts;4[6]: readback disable,

astatesig[14]: event buffer full.

2.6.4 Analog Trigger Event Data

The stream channel from the analog board is used to transfer trigger event
data packets. Two types of packets are supported, pulse height event packets,
and sample packets. When sample packets are enabled, the analog board will
not send pulse height event packets.

2.6.5 High Speed Calibration Mode

In nonflight operation during calibration campains it is very desirable to ac-
quire data at high rate from the analog board. For this purpose it is possible
to send the data stream from the analog board directly to the redundant
LVDS link.

This mode is enabled by setting bit confsig[0]. Reception of commands
in the redundant receiver is not impacted by activating high speed mode.

The data and clock from the analog board are time multiplexed on the
single redundant line. A microframe of four bits at 96 Mbps consists of the
sequence 0, 1, A, and B, with two data bits A and B. The GSE samples the
stream at 384 MHz, identifies the rising edges, and extracts data and clock,
which are then decoded by an instance of the same module as present in the
digital board FPGA.

3 Telemetry packets

Telemetry emitted by the FPGA is tagged with an APID. Eight bits xz of the
APID can be arbitrarily configured for each packet emitted. These bits shall
steer the processing of the packet in the 1CU. The upper eight bits distinguish
the included data types:

0x Olzx: Register readout.

12

0x 03xz: Histogram data.

0x 05xx: Memory readout.
0x 08zx: Frontend readout.
0x B7EA: L2 streaming. (TBC)

The last packet type shall not ever be issued when the sensor is integrated.
These packets are issued in L2 streaming mode, where all frontend data pack-
ets are sent directly to the serial line. This function will be used for sensor
calibration. This mode is someimes referred to as Slow Speed Streaming, to
distinguish it from the High Speed Streaming of the analog board bitstream
via the redundant channel.

3.1 Serial Packet Format

Telemetry packets are sent to the 1CU in the STF packet format defined for
EPD. The first two bytes of the STF packet payload is the APID.

0x beba
| | | | | | | | | | |
Ox cafe
| | | | | | | | | | |
0 | O | 0 | | | | | nl+l4 | | | | |
| | | | | | | <Iaplldl> | | | | | | |
| <data>
| | | | |
| <cre> |
| | | | | | | | | | | | | | |

3.2 Register Readout

A register readout is initiated with a corresponding command message. The
message address is the same as the issued APID, i.e., Ox 0lxz. The message
shall have 16 bits of data, which select from a set from 16 items to be sent
in the resulting telemetry packet. Each item results in 64 bits of data.

Command message:

1 0x01 Tx

| | I I N | | O O IR I |
3,210

The items selected by the given bit number are
0: status and error registers,

1: address registers,

13

modulus timer registers,

scratch register,

Nominal UART and PPS status.
Redandant UART and PPS status.

heater registers,

All other items are reserved, they return zeros.

3.2.1 Status and Error Registers

confsig and enablesg are control bits that are set and cleared with a master
control message. versiong is a constant identifier of the FPGA and the version
of the code. errorsg are bits that are set when something happened.

Register 0 Readout:

prigger clpssg

CIonlf s 116 | N I I N |

| misc:gI | enablesg | versiong | errorsg |
[AN N I T T Ty YT A T Oy v N

The miscg bits are zero, except for bit miscg[0], which is the state of the
EEPROM BUSY signal.
The error bits are cleared by strobesg,[7].

errorsg[7:6]: 0 (unused)

errorsg[5]: lost synchronization to analog board,
errorsg[4]: ATBRK received,

errorsg[3]: single-bit error in the external SRAM,
errorsg[2]: multi-bit error in the external SRAM,
errorsg[1]: single-bit error in FPGA RAM,
errorsg[0]: multi-bit error in FPGA RAM.

3.2.2 Address Registers
These are address pointers for various memory related operations.

Register 1 Readout:

L1 | (I) | | (IiumPRaglelg IIniSICplaglelg?

oy Imilsc pageig enc pagee

L1 | L1 |
Rhabase]

! phapRee1y

14

3.2.3 Modulus Timer Registers

All of the FPGA’s notion of time.
Register 2 Readout:
1 finig inits mods

L1 | L1 | IInOdi COI'LlIllth |

0 [Iusleclonde4 1

The 7 bit set when the PPS scheduler is not active.

The modulus scheduler counts useconds divided down from the FPGA
clock. At each pusecond it issues a tick. Messages from the PPS scheduler are
issued in phase with the psecond tick, messages from the 1CU are delayed
to fall in the middle of the tick period, to not collide with PPS scheduler
messages. The EEPROM page write delays are derived from the psecond
tick.

A PPS or strobesgy[2] resets the puseconds counter. The counter is 24-bits
long, so we can support PPS intervals up to 16 seconds.

The modulus scheduler counts seconds (as defined by the PPS interval)
in a cycles of length 3600, i.e., one hour. The mod count;s reflects the current
second within that cycles. The cycle is reset by a strobesgs[1]. The cycle is
factored into seven data acquisition cadence counters

3600 =0 x2Xx3Xx2X5HxXx2X%X6

Three moduli in the range 0...7 mark significant times in the cycle. mods
marks the beginning of a data acquisition cadence periods. All cadence levels
at or below mod3 are beginning in the current second.

finiz marks the end of the cadence periods. All cadence levels at or below
finiz end in the current second. This modulus tells how many data products
are generated in the current second.

initg is a rather complicated modulus used to initialize encoding se-
quences. All encoded data product with acquisition cadence equal finis
and encoding cadence at or below inits will initialize an new compression
sequence in this second.

finiz and initz are part of the science data packet headers. The parser
obviously needs to know these moduli to decode the data bitstream.

3.2.4 UART Status

The status of the UART and PPS receiver.

Register 4/5 Readout:

jart statusy I |0| I |ppslﬂ?gsl7

:II-eI]I.gtIZI:llq O [I I Sy Iy | peIriIOd?6 |

15

uart statusg[8]: AT-break active.

uart statusg[7]: RX break active.
uart statusg [6 : RX busy.
uart statusg[5]: RX active.
uart statusg[3]: RX line status.
uart statusg[2]: PPS line status.

uart statusg [1 .

]
]
]
]
uart statusg[4]: RX frame error.
]
]
]: TX empty.
]

uart statusg[0]: TX break (not used, alway zero).

pps flags7[6]: PPS is good.

pps flags7[B]: PPS is selected.

pps flags7[4]: PPS is too seldom, i.e., two PPS received on the other line.
pps flags;[3]: PPS is too long, longer than 500 ps.

pps flags7[2]: PPS is too short, shorter than 1 us.

pps flags7[1]: PPS is too fast, more than 5ms too early.

pps flags7[0]: PPS is too slow, more than 5ms too late.

lengthig: PPS length, in units of 24 MHz clocks.

periodgg: PPS period error, in units of 24 MHz clocks.

3.2.5 Heater Registers

The temperature, resulting duty cycle of the operational heater, and remain-
ing heater time in PWM cycles. See section 5.

Register 6 Readout:

T | |11 1 1 1 1 | fhul:‘atlloln241

| | O | | | (I-iu-riycly(::ll-eg | | | (I) | |

| -tl:emlpl? | I N | |

3.3 Histogram Data

A command message to the Data Product Scheduler (DPS) will initiate the
assembly of a histogram data packet. These are the main data products of

16

the sensor.

Command message:

3 0x03 T
[N A I N N AU (N A SN AN N R N

f lrgg trlnocllg

| I | I Y S S I B | L1 | | I
_atpese

count
11 1 1 [111 112 11 1 1

This command instructs the DPS to execute count;s items starting at addressy
from the data products table. If the current modulus is at least tmods, the
resulting data will be sent in a telemetry packet.

The payload of the data packet is a stream of items with varying bit
sizes, starting with an 8-bit header telling the cadence modulus, followed by
optionally compressed histogram counter sums. The last byte is filled with
unspecified bits. The format of the header is

[finds | tpits [F1o]

The f1go-bits from the command message are included in the 8 bit packet
header. They carry no semantics within the sensor unit and can be used to
multiplex up to four data product streams into one CCSDS telemetry packet
stream.

The packet is assembled in a special telemetry FIFO, to establish the
packet size before transmission is started. This FIFO can assemble packets of
up to 2kBytes.

3.3.1 Data Product Scheduler

A table with 2048 entries configures individual histogram window sums.
A window sum is calculated as the sum of histogram counters from a 2-
dimensional region in the external memory.

Data Product Table Item:
ysItrI:'Ld@l(;I

| || | | | | ylsj.lzeF; |

resg | ency | sum3 |C, t | @ pompy)

N I S Y N | ?ddir1$

Three bits have these meanings:
c: Clear each histogram memory word after reading.
t: Send the result to the telemetry.
a: Add the result of the previous data product.

17

The ¢-bit is used to clear the histogram memory for the next acquisition. The
DPS can be started with a message-id 0x 02z, instead of 0x 03zx, which will
prevent the assembly of a data packet, e.g., for clearing a memory region.

The a-bit can be used to build more complex data products. An item
with the a-bit shall follow an item without the ¢-bit. The first sum is not
sent for compression, but included in the following data item.

The memory window is defined by addrig, x sizeg, ysizeg, and ystrides.
The sum starts at addr;g. The address is incremented xsizeg times by one.
Then it is incremented by ystridejg and the run through the x is repeated.
The y stridejg increment happens ysizeg times. The total number of memory
locations being added is

(x sizeg + 1) X (y sizeg + 1)

The MSB of the memory address is the complement of enablesg[3], i.e., the
hist page bit, selecting the part of memory not currently used for data acqui-
sition.

3.3.2 Data Compression

A data item that has the ¢-bit set is sent to the compression engine. The
compression is controlled by sumg, enc3 and ress.

The DPS will execute every second. Most data products shall be produced
at a longer cadence. The sumg modulus tells the compressor for how long to
sum the data before transmission. The data packet will be generated every
second, but include only data items that have run their summing period.
The modulus values are given in Table 13 on page 43.

The resz modulus shall be the same as the sums modulus. If res; has a
lower value than sums, a sparse count rate is produced. The data is generated
at the cadence specified in sumg, but the counter is reset at the cadence given
in res3. Counts before the last reset are lost.

If res3 has a larger value than sumg, the data sent will accumulate over
multiple data items. This does not work with compression.

The encg modulus tells the compressor for which stretches of time the lossy
running difference compression shall be applied to the stream of counts. If
ency is not larger than sumz, the data will be send unencoded according to the
format specified in comps. Otherwise they are subject to further compression.
The compression cycle is reset at the cadence given by encg.

The compressor maintains a data record for each data product in main
memory. Each record occupies four words. The base address is configured in
enc pageg, 1.e., bits [18:13] of the memory address.

18

If a telemetry packet includes only data products that require summing,
i.e., all sumg > 0, the data packets between the sums would include only the
8-bit header. The DPs shall be started with tmods equal to the smallest sums,
to suppress these empty telemetry packets in between.

3.3.3 Unencoded Data

Most science data will be encoded with variable bit sizes. The format of
unencoded data is defined with two bits compy, selecting one of four represen-
tations for the counters. The unencoded data is unsigned.

compp=00: 16 bit unsigned floating point, 4-bit exponent.
compy=01: 8 bit representing 8-(log,(c) + 1).

comps=10: 24 bit unsigned integer.

comps=11: encoded uncompressed counter.

The format of an unsigned 16-bit float is

| expa, | | mamtrp

The represented counter value is

C = mantqy for exp, =0,
C' = (manty9 + 212) . 28%p,—1 for exp, > 0.
The floating point or log, representations do not need to be converted to

plain integers for comparisson to some threshold. The log, representation
can be used in trigger or monitoring logic for ratio cuts.

3.4 Memory Readout

The memory readout engine can read words from various sources:

external SRAM.

external EEPROM.

configuration tables in the FPGA

— PPS schedule table,
— data products table,

— L3 code memory,

e counters.

19

Readout is initiated with

Command message:

3 0x05 T
| | | | | |

count
I I N I N B L1111 11 111 1 1 1 1 1 1 1 il

2ddrgse,

Loy

The read data will be packed into a telemetry packet. Using message address
0x 04xx will also perform the reads of the memory, but not transmit a packet.
This can be used to perform EDAC scrubbing on configuration memories.
Which memory is read and how the final memory addresses are calculated
is encoded in addressss. The number of words read is count;. The word size
depends on the kind of memory or is encoded in addresssy as well.
The telemetry packet payload is prefixed with 32 bits

Memory readout header:

...couqt&

address
[N B ST

Three most significant bits of count;; are omitted. The addressoy is the
calculated read address of the first data word. This may be different from
the addressgy given in the command message.

3.4.1 External SRAM

The external SRAM is read in words of 32 bits. No EDAC decoding is per-
formed. The most significant bits of addressss encode how the address shall
be calculated:

0x8aaaaa: direct addressing,
0x9aaaaa: histogram page,
OxAaaaaa: PHA page,

0xBaaaaa: miscpageig.o indexed.

Direct addressing leaves the given address unchanged.

Histogram page access selects the half of the SRAM which is not currently
being used for data acquisition, unless addressas[18] is set, to access the active
half.

For PHA page readout, three bit ranges of the memory address are re-
placed, based on the content of the phabases.;o and phapageii.g registers.
phabasejg.;2 points to the memory where PHA data is being stored by data
acquisition. Readout address bit 18 is the complement of phabase[18]. Ad-
dress bits [17:12] are replaced by the corresponding bits from phabase. The

20

lowest 12 bits are the sum of the address given in the command message and
the phapage register.

The miscpages.o register can be used for dribble readout of large mem-
ory regions. The same readout command is issued repeatedly from the PPS
schedule, followed by an appropriate increment of the misc page register. For
PHA data readout the phapage register can be used in this fashion.

3.4.2 EEPROM Readout

Readout of the EEPROM yields bytes, i.e., 8-bit words. Two modes are sup-
ported:

0x Caaaaa: direct addressing,

0xFaaaaa: miscpageig.o indexed.

3.4.3 Configuration Table Readout

The configuration tables are stored in 72-bit wide memory blocks inside the
FPGA. Eight bits are used for EDAC redundancy, leaving 64-bits of infor-
mation. Readout yields error corrected 64-bit words. Dribble readout is
available via the dumppage;;.o register:

0x 0C2aaa: direct addressing,

0x 2C2aaa: dump pageii:o indexed.

The address ranges are

0x 0C2400-0x 0C25FF: L3 code.

0x 0C2600-0x 0C26FF: PPS schedule table.
0x 0C2800-0x OC2FFF: data products table.

The word size is encoded in addressys[19:18] of the command message (0x 0cC).
If a smaller word size is specified, the words will be only partially transmitted.
Don’t do that.

3.4.4 Counter Readout

The FPGA keeps a set of 128 counters in a memory block of width 36 bit.
After EDAC correction the counters are 29 bits wide. dump page;1.o indexing is
available:

0x 0800aa: direct addressing,

0x 2800aa: dumppageii. indexed.

21

The word size is encoded in addressyy[19:18]. For the counter readout, three
word sizes are implemented:

0x 0800aa: 32-bit unsigned integers.
0x 0400aa: 16-bit unsigned floating point, 12-bit mantissa,
0x 0000aa: 8-bit unsigned floating point, 3-bit mantissa.

Tables 1 to 5 list the counters provided by the HET-EPT digital board.
Unused counters up to index 127 are present, but nothing increments them.

Only one counter can increment per clock cycle. An event to be counted
will be latched until it gets access to the counter memory. When further
events for the same counter occur before it could be submitted, the additional
events will be lost.

Table 1: Digital Board Counters, frontend L2 triggers

Index Description

x 1 triggers lost on the analog board.
x 2 triggers lost on the analog board.
x4 triggers lost on the analog board.
x 8 triggers lost on the analog board.
x 16 triggers lost on the analog board.
x 32 triggers lost on the analog board.
x 64 triggers lost on the analog board.
x 128 triggers lost on the analog board.
L2 #0 triggers.

L2 #1 triggers.

L2 #2 triggers.

L2 #3 triggers.

L2 #4 triggers.

L2 #5 triggers.

L2 #6 triggers.

L2 #7 triggers.

—_ =
=l I R N N =)

—_ = =
Tt W N

3.4.5 Memory Index Registers
The memory index registers are manipulated by command messages. The
values are read via register readout telemetry item 1.

hist base|;s)=enablesg[3]: This bit is used as address bit [18] for histogram
data acquisition.

phabasejg.;2: Base address for PHA data storage.

22

Index

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Index

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Table 2: Digital Board Counters, SEU Errors

Description

Counter memory uncorrectable SEU errors.
Telemetry FIFO uncorrectable SEU errors.
L3 register uncorrectable SEU errors.

Data product schedule uncorrectable SEU errors.
L3 trigger code uncorrectable SEU errors.
PPS schedule uncorrectable SEU errors.
(unused) reserved for frontend SEU errors.
SRAM uncorrectable SEU errors.

Counter memory single bit SEU errors.
Telemetry FIFO single bit SEU errors.

L3 register single bit SEU errors.

Data product schedule single bit SEU errors.
L3 trigger code single bit SEU errors.

PPS schedule single bit SEU errors.

(unused) reserved for frontend SEU errors.
SRAM single bit SEU errors.

Table 3: Digital Board Counters, communication

Description

PPS accepted.

PPS received via message.

PPS received via 1 Hz clock from 1CU.
Data product packets.

Memory readout packets.

Register readout packets.

Frontend readout packets.

Packet collisions.

messages received from I1CU.
messages executed from PPS schedule.
EEPROM bytes written.

EEPROM bytes read or written.
ATBRK received, error88[4].

Lost analog board sync., errorss[0].
Unused.

Unused.

23

Index

48
49
20
51
52
53
54
95
26
o7
58
99
60
61
62
63

Index

64
65
66
67
68
69
70
71
72
73
74
5
76
7
78
79

Table 4: Digital Board, Trigger Counters

Description

Lost events received from the frontend.
Data products encoded.

L3 trigger started.

PHA records stored/counted.
Histogram windows computed.
Histogram bin increments.
Triggers received for class 0.
Triggers received for class 1.
Triggers received for class 2.
Triggers received for class 3.
TFIFO put while pushing.
TFIFO init while sending.
Window sum valid.

Floating point result valid.
log,(c) result valid.
Compression result valid.

Table 5: Digital Board, UART

Description

Valid bytes received.

Invalid bytes received (STOP bit missing).
Messages received.

Message header format errors.
Message timeouts.

CRC errors.

FIFO uncorrectable SEU errors.
FIFO single bit SEU errors.
Streaming mode: packet lost.
Streaming mode: packet init.
Streaming mode: packet submit.
Streaming mode: packet put.
Unused.

Unused.

Unused.

Unused.

24

phapageii.o: Index register for PHA readout.

misc pageis.o: Index register for external memory dribble readout.
dump page1.0: Index register for internal memory dribble readout.
encbaseig.13: Base address for the data compression memory.

And there is a scratchgy register, which has no function at all, but shall be
used as a versioning tool to inject into the telemetry, to help the parsers on
the ground to figure out what configuration was used. The scratchgy register
is returned as readout item 3.

To manipulate the index registers the command message addresses are

0x 0004: phabasejg.12,phapageji.g = datajg.g.

0x 0005: phapagej.o = dataji.g.

0x 0006: phabasejg.j2 +— datajg.12, phapageii.,p +=— datajj.g.
0x 0007: encbaseqig.13 =— datajg.13.

0x 0008: miscpageig.g — datajg.o-

0x 0009: miscpageig.g increment.

0x 000A: dump pageji.0 = dataji.g.

0x 000B: dump pageig.g increment.

0x O00F: scratchgqy = datagq.

hist base[ig] is set or cleared with strobes from a master control message. The
MSB of phabase18:12[18] can be toggled with strobes[ll].

The miscpageis.g and dump page;s.o increment commands allow for quite a
bit of flexibility to control the memory regions covered. The message data
provides an increment amount, two masks, and a constant.

miscpagejg,p dumppageis:o

<increment value> dataig.o dataii.
<ancrement mask> datas(.32 datasr.16
</€€€p mask> datagg.32 datays.32
<constant> datasg.4s

The index register will be incremented by the <increment value>. All bit
positions not set in the <increment mask> will be cleared from the sum. All
bit positions set in the <keep mask> will be keep from the old value of the
index register. Finally, all bits set in <constant> will be set in the index
register.

Let’s see how much of this is useful.

25

3.5 Frontend Readout

A message to address 0x 1ff on the analog board will initiate the return of an
analog readback packet to the digital board. This data stream will normally
be ignored by the digital board. A special analog readback command message
can be used as an alternative way to issue such a readback message to the
analog board

Command message:

| ? | | IOXI08I | | || lexl || |

ffset | | i k
| tlemPol S|e |8 | | | | | Iltlemlsm?sllg)l

This command will save the telemetry tag xa and enable the transmission of
the next analog readback packet wrapped into a telemetry packet with APID
0x 08xx.

The analog readback packet includes the itemsmasks as first data word.
The digital board FPGA will use the returned mask to calculate the size of
the packet. So, unfortunately, the engine that forwards the analog readback
needs to have hardwired knowledge of the size of the items that may be
returned.

3.5.1 Analog Readout Items

The bits in the itemsmask;s select the items that shall be returned. The items
are variable sized blocks of 16-bit words.
Filter configuration, 8 words.

Trigger configuration, 92 words.
Timestamp clock, 2 words.

HK ADC readout, packed, 12 words.
HK ADC readout, unpacked, 16 words.
Raw sample peek, 30 words.

Pulse height peek, 30 words.

Pulse phase peek, 30 words.

Single channel trigger counter read, 30 words.

Single channel trigger counter read and clear, 30 words.
10: Single channel trigger counter clear only, 0 words.

Bits [14:11] are unused/reserved. The items are send starting with the highest
selected bit.

26

3.5.2 Analog Housekeeping

Sixteen ADC readings with 12-bit resolution are returned either packed, or
unpacked one reading per words with the channel number prefixed.

Table 6: Analog Housekeeping Readings

0 400 HET preamp temperature
1 500 EPT preamp temperature
2 401 HET VREF, +2.5V
3 501 EPT sensor temperature
4 402 HET sensor temperature 1
5 502 EPT VFET/2, +5V
6 403 HET VFET/2, +5V
7 503 EPT VANA/2, +6V
8 404 HET sensor temperature 2
9 504 EPT VREF, +2.5V
10 405 Shaper Vcc/2, +5V
11 505 Bias Current
12 406 Power board temperature
13 506 Bias Voltage
14 407 Analog board temperature
15 507 Digital board temperature

3.5.3 Temperature Capture

To control the operational heater, it may be necessary to know the temper-
ature of the sensor unit. Among the items that can be returned from the
analog board are readings of voltages and temperature sensors. When the
temp offsetg field in the command message is non-zero, it will be used as a
word offset into the returned analog readback packet. Twelve least signifi-
cant bits from the indicated word will be copied to the tempis register. The
temp offsetg shall point to a word from an unpacked HK ADC readout. Some
packed HK ADC readout channels may also work if they are properly aligned.

To capture a temperature from an analog readout packet without issuing
a telemetry packet, the command message can be issued with address 0x 09xx
instead of 0x 08zx.

3.5.4 Peeking

The digital filter continuously issues pulse height reconstruction parameters
and raw ADC samples for each data acquisition channel. Peek readout cap-

27

tures a set of these values. Raw sample peek returns a set of ADC samples,
to diagnose problems with the analog signal baselines. Pulse height/phase
peeks may be useful to estimate noise amplitudes.

The digital filter needs to be enabled via enablesg[5] for any peek to yield
the expected data.

3.5.5 Single Channel Trigger Counters

Each signal channel has a counter that increments when its L1 trigger thresh-
old is exceeded. The counters can optionally be cleared after reading, or even
be cleared without reading. The counters values are provided in 16-bit un-
signed floating point representation with 12-bit mantissa.

3.6 L2 Streaming

When the data acquisition is enabled on the analog board, a trigger event
packet is sent for every valid L2 trigger. Normally, this data is sent to the
L3 trigger processor and, on request from L3, saved into PHA storage.

For calibration of the sensor it will be necessary to get direct access to
the event packets. The bit confsig[2] enables L2 streaming mode, all event
packets received from the analog board will be wrapped into a telemetry
packet. L2 streaming uses the telemetry FIFO.

When the FIFO is full, the packets trying to get in will be dropped.

3.6.1 Samples Readout

The analog board FPGA can be set to samples mode. Instead of trigger
event packets, L2 triggers will issue a configurable stream of sample packets,
including consecutive sets of raw ADC readings. This is like a 30 channel
digital oscilloscope, and can be used to diagnose the pulse shapers.

Samples mode is enabled by setting bit confsig[1]. If streaming mode is
enabled as well, the packets will be sent to telemetry.

Sample packets will be forwarded to the L3 trigger, and can be saved in
PHA buffers. This may lead to scenarios to use sample mode in flight for
troubleshooting, with readout through PHA storage.

3.7 Monitoring Parameters

The Sensor unit will send several packets to the 1cU for purposes other than
being forwarded to the spacecraft and to ground, i.e,

e monitoring sensor status and health,

28

e data to be sent in 20 packets,
e trigger burst mode, and
e detect high particle rate conditions.

These functions need information from the sensor unit. The 1CU will extract
values from sensor packets and store them in its global parameters storage.
Parameter extraction is governed by a table in the ICU configuration that
specifies for each extractable parameter:

e a parameter-ID,

e the sensor-ID,

the packet-APID,

byte offset into the packet,

length in bytes of the value to extract, big endian,

a mask (32 bits) to clear selected bits from the value.

A parameter is identified by a 16-bit parameter-ID.
This section lists possible/proposed parameters to extract from sensor
packets, and how they may become useful.

3.7.1 Register readout

Sensor status is extracted via register readout, as described in section 3.2.
Table 7 assumes that the first seven registers are read, i.e., the register mask
is 0x007F. With a different mask the offsets will change. The STEP sensor
may define more registers that may require monitoring, these may be added
to the table in the future.

Table 7: Parameters to extract from the register readout packet. Offset is in
bytes, length is in bits.

Name offset length description

status 2 64 variius status and error bits

time 22 12 cadence counter, second of the hour
duty cycle 56 8 OP heater duty cycle

temperature 57 12 OP heater temperature reference

3.7.2 Histogram Data

A packet with data derived from the acquired histograms will be formatted
for the 1CU, i.e., without variable length encoding. Most of these will be

29

8 bits values representing the eight times the logarithm of base two of the
counter value. This format is suitable to be directly put into s20 packets as
requested by RPW.

The format is also suitable for relative trigger cuts, because differences in
parameter values represent ratios of counter values.

A second useful format available is 16 bits unsigned floating point repre-
sentations of counter values. These can be directly compared to thresholds,
since the representation interpreted as an unsigned integer is monotonous
with the represented counter value.

For absolute difference trigger cuts, the counters can be represented as
plain integers in 24 bits.

The packet from an HET-EPT sensor shall include

e ten log, values from EPT as requested by RPW, covering four energy
ranges for electrons and one energy range for ions, from two directions,
at a time resolution of 1s.

e the same ten values at time resolution 10s,
e further data from HET and EPT as required.

The data items must be sorted by time resolution. Longer cadence data
needs to be appended to shorter cadence data, so that each data item is
always at the same byte offset in the packet.

The 1cU will reserve a set of parameter-iDs for trigger parameters that
can be configured during the mission to extract the required data items for
monitoring and trigger purposes. The parameters to be sent in s20 will be
alloated with fixed 1Ds. Triggers can use any parameters available, including
the s20 parameters.

3.7.3 Counter Memory Readout

The digital board counters may include items which are useful for monitoring
or trigger purposes. Event or trigger counters can be used to identify high
rate environments. SEU error counters may be used to monitor sensor health.
Message counters can flag unusual activity, i.e., for a flag in a status word
that indicates a message reception in a sensor unit.

The available counters are listed in tables 1 to 5.

3.7.4 HET-EPT Analog Frontend Readout

A packet from the frontend board will contain at least the housekeeping ADC
readings in unpacket format. The single channel trigger counters may be

30

usefull for high rate triggers. The frontend packet with items mask;5=0x0110
will provide the parameters at the offsets given in Table 8.

The 1CU may define parameters with fixed semantics for the housekeeping
ADC readings. These readings are prefixed with a 4-bit channel number which
may need to be masked out when extracting the parameters. That’s why the

length is givel as 12 bits.

The single channel counters are 16 bits unsigned floating point. These
may be extracted into general trigger parameters as required.

Name

sc 00

sc01

sc 29

HK 400
HK 500
HK 401
HK 501
HK 402
HK 502
HK 403
HK 503
HK 404
HK 504
HK 405
HK 505
HK 406
HK 506
HK 407
HK 507

4 Data Acquisition

Table 8: Frontend parameters

offset

2
4

60

62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92

length

16
16

16

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

description

L1 trigger counter channel 0.
L1 trigger counter channel 1.

L1 trigger counter channel 29.

HET preamp temperature
EPT preamp temperature
HET VREF, +2.5V

EPT sensor temperature
HET sensor temperature 1
EPT VFET/2, 45V

HET VFET/2, +5V

EPT VANA/2, +6V

HET sensor temperature 2
EPT VREF, 2.5V
Shaper Vcc/2, 45V

Bias Current

Power board temperature
Bias Voltage

Analog board temperature
Digital board temperature

Various bits from the master control registers control the data acquisition

process:

enablesg[0]: event reception enable,

enablesg[1]: L3 trigger enable,

31

enablesg[2]: PHA storage enable,

enablesg[4]: timestamp clock enable.
enablesg[5]: analog frontend enable,

confsig[0]: high speed calibration mode enable,
confsig[1]: sample mode enable,

confsig[2]: L2 streaming mode enable,

4.1 Pulse Height Data Packets

When the L2 trigger in the analog board FPGA identifies a valid particle
event, a data packet is sent to the digital board. There are eight L2 triggers,
and each has an associated channel mask identifying the signal channels that
are important to analyze the particle hit. Data is sent for all channels that
are selected by any valid 1.2 trigger. The data packet starts with the channel
mask.

Table 9: Event Pulse Height Packet Format

Ox BEEF A128
I T I T S N N T T I
R channel masksy
[I N I I T [|

Iprles<|:al|e8| I dltlllne]16 I

IBBIlO |

The MSB of the channel mask word identifies random triggers that are
activated by strobesgs[14]. Those event packets will contain data for all 30
channels.

The header further contains three fields

trigg: bitmask of L2 triggers.

prescaleg: number of event packets that where dropped because the FIFOs
were full, since the last transmitted packet.

dtimejg: time since the last trigger in pseconds.

For each selected channel a record of 32 bits will be sent, containing three

data fields
A1zt pulse height, i.e., filter channel A.

32

BB1o: pulse phase, i.e., filter channel B, ten bits selected by the leading bit
in Aqg.

T4: pulse age.

4.1.1 Event Packet Reception

The digital board monitors the stream channel from the analog board for
the sync header of event packets 0xBEEF A128 or sample packets 0x5461, and
initiates the packet parser when it is idle, or when there where unrecognized
data in the stream before the currently parsed packet. Event packet reception
cannot be disabled at this stage.

The parser will capture the channelmasksy, and expect as many channel
records as requested. The data will be send to three destinations

e the L3 data set,
e the PHA data set, and
e in streaming mode to the telemetry FIFO.

The telemetry FIFO receives the packet unchanged, if streaming mode is
enabled.

The L3 and PHA data sets are transferred simultaneously to the event
buffer. Each data set contains 32 words with 32 bits each. The L3 data set
will later be loaded into the L3 register file, the PHA data set will be saved
in a PHA buffer when so instructed by the L3 processor.

The PHA data set receives the words from the event packet unchanged.
The data for each signal channel will we written to a fixed position in the
data set, i.e., unselected channels will be substituted with zeros in the data
sets. PHA data is saved without EDAC protection into the external SRAM.

Table 10: L3 Data Set Format

)

| I | I . | IChaI_nnIe:LImaISk%LO | I I O

Time130, Friey hapnp paskapoy
0,001 Ty
| 1 1

I I S Y S N | A}g I(Sign IethenldeCll) | I I S

The word size of the L3 trigger processor is only 29 bits because of EDAC
overhead. Some reformatting is necessary to make sure all relevant data fits
into the registers.

33

The L3 trigger will not receive the BBy fields of the channel records, nor
the prescaleg field of the headers. The dtimeqqg field is truncated to 13 bits
with overflow check.

L3 data set word 0 receives the part of the channel mask corresponding
to HET channels. Word 1 receives the channel mask bits for EPT channels,
and further header data. The remaining data set words are each associated
with a fixed signal channel. For unselected channels all zeros are written.
Available channel data are formatted such that the whole register value can
be used as the pulse height, the data in the LSB contributing insignificant
noise.

4.1.2 L3 Event Class

The L3 trigger processor has four entry points, i.e., there can be four different
programs called for different event classes. The event class is established by
the packet reception unit from the L2 trigg bits.

The mapping from trigg to event class is provided by the trigger classig
register, which can be set with

Command message:
OIX OIOOI1

||
Fr%ggerICllaSISIGI I |

The event class is a 2-bit number. The MSB of the event class is set,
when any of the L2 trigg bits is active that is also set in the upper half
of trigger classig[15:8]. The lower bit of the event class is set when any of
the L2 triggers selected by the lower half trigger classyg[7:0]] is set.

The proposed value for the trigger classig register is

|1I1I0I1|OIOIOI0 1I0I1I1|OIOIOIO|

with a proposed configuration of L2 triggers
trigg[0]: EPT ion forward,

trigg[1]: EPT electrons backward,

trigg[2]: EPT ion backward,

trigg[3]: EPT electrons forward,

trigg[4]: HET forward stopping,

trigg[5]: HET forward penetrating,

trigg[6]: HET backward stopping,

34

trigg[7]: HET backward penetrating,

With this L2 trigger menu, the L3 trigger classes are:
0: EPT trigger, no HET triggers present.
1: HET forward stopping, no other HET triggers.
2: HET backward stopping, no other HET triggers.
3: HET penetrating.

EPT triggers are presumably more frequent than HET triggers. The class 0
program does not need to bother with HET. The HET programs need to check
for possible EPT triggers as well. HET stopping trigger classes do not need to
look for signals in the downstream detectors. HET penetrating needs to do
the most work. The downstream hits may be crosstalk or it may be a real
penetrating particle.

4.1.3 Trigger and Prescale Counters

The data reception unit counts the occurrences of set bits in prescaleg and
trigg for all received event packets. The counters are located at address 0
to 7 (prescaleg) and 8 to 15 trigg of the counter memory.

The counts of the prescaleg bits can be weighed by bit significance and
added together give the total number of events lost in the analog board.

4.2 Event Buffer

L3 and PHA data sets are written into the event buffer memory, which is 128
word of 64 bits, excluding EDAC overhead. The words contain the L3 and
PHA parts, 32 words for one data set. Four event data sets fit into the buffer
memory.

Incoming event data is always written into the next available data set
space. When the set is complete,

e if enabless[0] is not set, the data set will be discarded and ignored.

e Else, when the event buffer is full, the data set will be discarded, and
counted as lost.

e Else, the data set is queued for processing by the L3 processor, i.e., the
data set write pointer advances to the next slot.

4.2.1 Feeding the L3 trigger processor

The L3 trigger processor operates on a register file with 256 registers. The
L3 event data sets are loaded into the last 32 registers before the trigger is

35

executed.

When events are queued in the buffer, and the L3 trigger processor is
idle, and the PHA storage unit is idle, the L3 processor is loaded and started.
The data set memory space is then released from L3 but still locked for PHA
storage. But all previous data sets are released from PHA at this point and
become available for new incoming data.

The event buffer keeps track of the event class that was assigned to each
data set. The L3 trigger is started at the instruction address with the event
class as the two MSB and zeros in the LSB, i.e., at addresses 0x 000, 0x 100,
0x 200, or 0x 300.

4.2.2 PHA storage

The L3 trigger processor may decide to save the PHA data sets into a PHA
buffer in external memory. 16 buffers with 256 memory words of space are
available, 32 bits each, 1kByte per buffer 16 kBytes total. L3 decides into
which buffer the data shall go.

The idea is that rare events are saved in separate buffers, so they are not
lost. The frequent events will fill their buffers fast and all further events will
be dropped.

The PHA storage is not protected with EDAC redundancy. The data is
not considered essential for science analysis. EDAC protected memory words
leave only 26 bits, which is not a good match for the storage of PHA data.
The location of the PHA buffers in the external memory is configured via
phabasejg.12.

The PHA storage unit keeps two counters for each PHA buffer. neventsoy
is the number of events that where supposed to be stored in the buffer, and
nwordsg is the pointer to the last word in the buffer that was written. These
two counters are written into the first words of the PHA buffer for each event,
i.e., neventsoy continues to count when the buffer is full.

nevents nwords
R S R TS M I s e i

The PHA data set is appended to the buffer data, until it is full. The end of
a full buffer will likely contain an incomplete event data set. Only the event
header and valid channel data are saved. The headers allow to reconstruct
the storage size of each event.

The MSB of phabasejs.j2 is toggled with strobesgs[11]. That effectively
saves the set of filled PHA buffers for telemetry readout, and make a new
set available for data acquisition. The new set needs to be cleared with
strobesgy[8], which resets all internal copies of neventssy and nwordsg to zero,
and writes zeros into the first word of each PHA buffer.

36

4.2.3 Test Data Injection

Test data can be injected into the PHA buffer via command messages to ad-
dress 0x 0003. A message with size tag zero resets the input register pointer,
i.e., the next data will go into slot 0 of the event data set.

Command message:
| 0| 0x 0003
| 11 | I

Messages with size 64-bits write into the next word of the event buffer, with
the PHA data in the upper half of the data word and the 1.3 data in the lower
half.

Command message:

3 0x 0003
| | | | | | | | |

| I .
 PHA DATA 9ET> |
<[3, DATA SET>,

The data set is submitted by a message with data size 16-bits. The two LSB
encode the event class.

Command message:

1 0x 0003
coloo o

ec
N S I [y I A A | |

The analog frontend should be disabled when the injection is in use, else the
data may collide with real triggers.

4.2.4 FEvent Data Formats
... TODO

4.3 L3 trigger

The L3 trigger is a programmable processor with separate program and reg-
ister memory.

Both memories are EDAC protected. EDAC errors in the program are
corrected in the memory when encountered. EDAC errors in the register
memory are corrected for read but not in memory.

The program memory stores 1024 instructions. An instruction word is
32 bits. Two instructions are stored in one configuration memory word. The

37

registers are 29 bits, stored in 36 bit wide memory blocks including 7 bits of
EDAC redundancy.

The result of the computation of each instruction is stored in the register
file at the address that is the same as the eight LSB of the instruction address.
The program leaves a trail of values behind as it executes. The processor
maintains two condition bits. Execution of any instruction is conditional
depending on the value of those bits. An instruction where the condition is
false will save the result of the previous instruction.

The opcodes are designed specifically for the work of a L3 trigger. There
are instructions for calibration and corrections of pulse height values to en-
ergy units. It can compute log, of pulse energies, for histogram binning and
ratio cuts. The experience gained from the MSL RAD trigger went into the
design of this processor.

Table 11: L3 instruction opcodes

STOP cc00 0000 0--- -=== —=== ———= ———= ———-
NOP cc00 0000 10-- --=-= ———= ———= ———= ———-
GOTO ujg cc00 0000 11-- --uu uuuu uuuu ---- —---
LOG R, cc00 0001 —-=--= —-=== —=== ———— XXXX XXXX
POKE Ry =R, cc00 0010 ——=—= ---- dddd dddd xxxx XXXX
BITC RI{U5} cc00 0011 nOSC —-——- ——- U uuuu XXXX XXXX
BITS Rx{u{,} cc00 0011 ni1SC ---- ——- U UUUU XXXX XXXX
BRNG RI{V5 : u5} cc00 0100 ———— -- VV VVVU UUUU XXXX XXXX
TRIM R$,u8,v8 cc00 0101 vvvv VVVV uuuUU UuuUl XXXX XXXX
MULI Rgg * Mo > €4 cc00 0110 eeee mmmm mmmm mmmm XXXX XXXX
PHA R, + ue ccO0 0111 uuuu uuuu UUUU UUUU XXXX XXXX

ADD Ry, > 14+ Ry > j, cc00 1000 yyyy yyyy jijjj iiii xxxx xxxx
SUB Ry > 14— Ry > j, cc00 1001 yyyy yyyy jjjj iiii xxxx xxxx
HIST R, > i4+ Ry, > j, cc00 1100 yyyy yyyy jjjj iiii xxxx xxxx
HIST R;>is— Ry > j, cc00 1101 yyyy yyyy jjjj iiii xxxx xxxx

CMP R, +ug <=> Ry cc01 Oooo yyyy yyyy uuuu uuuu XXXX XXXX
CMP R, <=> Ry + ug ccO01 looo yyyy yyyy uuuu uuuu XXXX XXXX
ADDI R, +1igy ccli diii iiii iididi diididi iidi xxxx xxXxXX

Three opcodes produce output.
e STOP: Stop the processor, to accept another event.
e HIST: Increment a histogram counter.

e PHA: Submit the PHA data set to a PHA buffer.

38

Please refer to the Solar Orbiter Level 3 Trigger Instruction Set Manual for
details. An assembler, disassembler and simulator is available.

4.3.1 HIST Instruction

The HIST opcode computes the same value as an ADD or SUB instruction.
The result is taken as the memory address in external SRAM. The memory
location is read, incremented by one and the result written. The memory
access is EDAC protected, the histogram counters are 26 bits. The increment
is checked for overflow, the counters do not wrap.

Bits [17:0] of the memory address are the result of the HIST computation,
the MSB is hist base[lg}:enable58[3]. hist basej;g shall be toggled every second.
The pPPs scheduler shall issue a command to the data product scheduler that
clears the memory areas used for histogramming after the data products were
extracted.

The HIST opcode executes an ADD because it may be common to add
two log, energy values as an index into 2-dimensional histograms, or add a
histogram index to a base address.

4.3.2 PHA Instruction

The PHA opcode computes an ADDI. Four LSB bits of the result are trans-
mitted to the PHA storage unit to select the PHA buffer where the data shall
be stored, if space permits.

4.4 Streaming mode

Do not enable streaming mode, unless you are prepared to handle a lot of
packets on the serial line. Disable all other telemetry sources when you do.

4.5 Sample Mode

When sample mode is enabled, the analog board sends sample packets instead
of event pulse height packets. Three conditions must be true to activate
sample mode,

e the bit confsig[l] must be set,
e the register nsamplesg must be nonzero, and
e the register tsamplesg must be nonzero.

nsamplesg is the number of sample packets that shall be sent for each enabled
L2 trigger, and tsamplesg is the mask of L2 triggers enabled for sample mode.

39

Both registers are part of the filter configuration, at address 0x0107 in the
analog board command address space

| | vsempless | | | mspmpless |

A sample packet includes a timestamp with pseconds resolution, and 30 ADC
readings sampled simultaneously from the channel ADCs. Recording about
16 consecutive sample packets captures the pulse shapes that were analyzed
for the peak heights that lead to the trigger.

The L3 trigger probably cannot do much with the sample packets, except
to store them in a PHA buffer.

Table 12: Sample Packet Format

| | | | | | OIX 5IA6I1 | | | |
<ch 0> <ch 1> | <ch2>. .. |
| |
| <ch 2> <ch 3> <ch 4> <ch 5> |
<ch <ch 6>	<ch 7>																									
I L1 <	Ch 8	>	I <Ch	9	> L1	<C]	Z 1	0> [1																		
<ch 10> . <ch 11> L <	ch .1 2> . L <ch 13>																									
	I<Ch I3>I	<ICh}IZ4I>				<Ch 15>																				
<ch 16> <ch 17> <ch 18>																										
<ICh I_Z 8I>			<IChI1 9I>							<ICh I'QOI>				<IChIQII>												
... .<ch 21> <ch 22> <ch 25>																										
<ch 24> <ch 25> <ch26>...																										
<ch 26>	<ch 27> <ch 28> <ch 29>																									
0	<C	h 2	9>			.<”:im€$.t“7."p.>. I R N N A N B																				

4.6 Timestamp Clock

The analog board FPGA has a 32-bit clock incrementing at 1 MHz when
enabled. The timestamp is included in sample packets. The clock can be
reset with strobesgy[3].

40

5 Operational Heater

To drive an operational heater, the digital board FPGA provides a PWM
output. At a frequency of 125 kHz the output can drive a square wave with
duty cycle adjusted in 192 steps from 0% to 100%. The output shall be
filtered to provide a DC voltage to the gate of a heater n-MOSFET.

The PWM output cannot be turned on permanently. A command message
needs to be send periodically to keep it operating

Command message:

3 0x 0002
| | | | | | | | |

| | L1 | IdllII'at|10|112%

|
sh setpoint a i
| P2 Loy peYPOnME I e s TR Lo ™M

The heater will be turned on for durationgy cycles. The duty cycle will be
calculated from the temp;s register and the parameters of the message.

The tempy is assumed to hold a temperature reading spied from a recent
analog housekeeping reading. The lower the value of tempiy the higher the
temperature. The duty cycle is calculated by the formula

dutycycle = (temp — setpoint)/QSh

The result is clipped to the range ming to maxg. If ming and maxg have the same
value, the duty cycle is set to that fixed value. Values from 192 up result in
100 % duty cycle.

The duty cycle is computed once when the message is received and will
not update when temp;> changes.

5.1 Heater Modes of Operation

The heater can be autonomously operated by the sensor unit. The PPS
schedule may include commands for the temperature readout and to kick the
heater periodically. In case of a temperature sensor failure the heater will
misbehave, but the probability for such a failure is low, and the consequences
not likely dramatic.

Alternatively, the 1CU shall analyze the sensor housekeeping readings pe-
riodically, figure out if the sensors deliver plausible results and kick the heater
via command messages. The ICU can consider sensor readings from multiple
temperature sensor.

A combined approach requires the 1CU to monitor the housekeeping read-
ings and heater behavior and reconfigure the sensor in case of anomalies, e.g.,

41

select a different heater. Reconfiguration involves manipulation of the pPPs
schedule, which is non-trivial for the 1CU to do autonomously. There may be
a few canned sequences for switching between two temperature sensors or to
turn the heater off.

6 Count Rate Series Compression

The main data products of the sensor are time series of count rates. The
L3 trigger classifies energetic particle triggers and counts the occurrences of
triggers of a large number of classes for consecutive periods of one second.
The checkout units needs to reduce the information in these counters to
telemetry products of a few hundred bits per second. This reduction is
achieved in three steps:

1. Binning of the trigger classes into fewer, physically relevant particle
classes.

2. Rebinning of the resulting time series to longer cadence.

3. Representation of the counter values in a compact format, which in-
volves removing statistically insignificant information.

The reduction process is controlled by the data products scheduler, and ex-
ecuted by the histogram window unit and the compression unit.

6.1 Histogram Windows

The counters accumulated during data acquisition are mostly one or two
dimensional histograms. The events are classified by one or two energy pa-
rameters, binned equidistantly in units log,(£). The rebinning will provide
projections of the data on physically relevant dimensions, or specific selec-
tions of particle types.

Finer binned products will be produced with longer cadence, some smaller
sets will be provided with higher time resolution.

6.2 Counter Cadence

Governing the cadence periods of the data products is the modulus unit. This
is a set of seven small counters that divide time into eight cadence units, each
being a multiple of the previous. At the root is the period of the PPS signal
from the 1CU. The modulusz value is the level of the longest cadence interval
that ended with the currently processed acquisition. All shorter cadences end

42

at the same time. The modulus unit also provides the information to the
compression unit which cadence interval begin with the current acquisition.

The PPS scheduler uses the modulus unit to qualify tables entries for
execution.

Table 13: Cadence Modulus Table.

mod div cadence

0 1 second, no summing
1 5 5 seconds

2 2 10 seconds

3 3 30 seconds

4 2 1 minute

5! 5 5 minutes

6 2 10 minutes

7 6 1 hour

6.3 Compression Unit

The heart of the compression unit is a machine that can execute seven basic
operations. The input is a histogram window sum acquired during the last
second. The unit further computes and uses three numbers stored in external
memory separately for each data product, to save state from one acquisition
to the next.

The encoding scheduler controls which of the basic operations need to be
executed for the given data product at the current modulus.

6.3.1 Encoder

The very central part of the compression unit is the encoder, which computes
a variable length encoding of an approximation of a signed integer value.

The encoder operates with one parameter drops, governing how many
LSB of the input value will be omitted from the encoded result. When this
parameter is zero, the result will include representation for all bits that are
significant when the Poisson distribution applies. The parameter can call for
up to three more bits to be dropped.

An input value of zero will be encoded in a single bit. With drop, larger
than zero, a range of inputs around zero will be represented as zero. Larger
inputs will be represented by increasingly larger representations, about as
large as the number of significant bits of the original value.

The encoded representation is sent to the telemetry FIFO.

43

A second output of the encoder unit returns the exact value represented
by the encoded bits, i.e., the number that the decoder finds in the received
telemetry.

6.3.2 Basic Encoder Operations
Three numbers are stored in external memory for every data product to
compute sums and compressed time series data

A the accumulator to build the sum of consecutive acquisitions,

—L minus the number of counts that the receiver on the ground decodes
from the telemetry for the previous acquisition cadence,

R the residue, i.e., the number of counts that should have been included
in the number last sent, but were lost due to the encoding.

The encoder machine is started by issuing a nonzero opz instruction, and
with input value D. The operations are

1: Encode the residue at the end of a compression cadence
E = encodey(R)
2: Encode an intermediate value in full time resolution

QQ = D+R-L

E = encode3(Q)

() — decode(E)
—L = —L— decode(F)

=y
Il

3: Encode the first value of a compression cadence in full time resolution

O = D
E = encodey(Q)
R = @ —decode(E)
—L = —decode(E)

4: Add to the accumulator
A=A+D

5: Initialize the accumulator for a new summing cadence period

A=D

44

6: Encode an intermediate sum

Q = A+D+R—-L
E = encode3(Q)
R = @ — decode(F)
—L = —L — decode(F)

7: Encode the first sum of a compression cadence

Q = A+D

E = encodey(Q)

R = @ —decode(E)
—L = —decode(E)

All £ or some A may be sent to the telemetry FIFO, at appropriate times.
A, —L, and R are read from, and/or stored in external SRAM to be available
for the next acquisition period, as indicated.

There is a special case: if —L > —8, then —L will be set to zero. The
next value will be transmited as absolute value, not a running difference.
This is to avoid oscillations in the data stream with low count rates.

(Early versions of the module were treating small L differently: if —L
was zero, or not read at all, and Q is so small that it encodes to the smallest
representation, but not zero, and drops is nonzero, then the new —L = 0.)

6.3.3 Cadence Sequence without Compression

For a data product without compression, i.e., sumg > encs, only op3=4 or 5
will be called. In the first or only second of a summing period op3=5, all
further seconds ops=4. In the last second, the resulting A will be converted
to one of four possible representations, and put into the telemetry FIFO.
This is useful for very low cadence data products or for data products that
shall be analyzed on board the s/c, e.g., for burst mode trigger evaluation.
The available representations were described in section 3.3.3 on page 19.

6.3.4 Compression Sequence

For a data product with full time resolution a value will be sent every second,
with compression. The data are counters which are expected to deliver almost
the same number of hits every second distributed according to the Poisson
distribution. This gives two handles for compression:

45

e The lower half of the bits representing the counter are noise and can
be dropped.

e By computing running differences, the numbers become smaller.

The stream of counters is divided into encoding periods by the encs parameter
of the data product. The encoding period is started by sending a compressed
representation of the first value without dropping excess bits using op3=3

Q = D

E = encodey(Q)

R = @ — decode(F)
—L = —decode(E)

Two number are kept: R is the difference between the encoded value D and
the number represented by the encoding. This number will be added to the
next value, so the counts will not be forgotten. L is the encoded number,
i.e., the value that is received for this counter on the ground after decoding
the telemetry.

For the following counter values the difference between the new value and
the last will be encoded, plus the residue that was dropped by the encoder.
The last value that is subtracted must be the value known on the ground L,
not what we liked to have sent, so that it can be added when decoding.

QQ = D+R-L

E = encode3(Q)

R = @ — decode(F)
—L = —L —decode(F)

@ is the new value that we want to send. It will be encoded with three extra
bits dropped.

When the last encoded value was send, one further number will be en-
coded and sent to the telemetry packet, so there is one more number in the
data stream than there were counter values

E = encodey(R)

The last residue R is send without dropping bits. For very low count rate
products, the stream will likely contain only zeros. One or two hits during the
encoding periods will be dropped. At the end of the period those hits have
accumulated in the residue R. This last encoding makes sure they are not
lost. The time resolution degrades to the encoding period, but that cannot
be a problem for count rates that low.

46

6.3.5 Compression Sequence with Summing

The same compression sequence will be performed for data with reduced time
resolution, except that each value that is submitted to the procedure is the
sum of a series of inputs.

Each summing period starts with op3=5 to initialize the accumulator with
the first D, followed by the required number of op3=4 to compute the sum.
The last input value is fed into an encoding operation. The first sum is
encoded without loss of bits using ops=7

QQ = A+D

E = encodey(Q)

R Q — decode(FE)
—L = —decode(F)

The remaining sums use op3=6, which does it all

Q = A+D+R-L

E = encode3(Q)

R = @ —decode(E)
—L = —L —decode(F)

When the last sum of a compression period was encoded, the residue R will
be immediately encoded and sent as well, as described above.

6.3.6 Encoding scheduler

The compression unit is driven by the encoding scheduler, which is kicked
into action when the histogram window unit delivers a window sum. Depend-
ing on the sumg and encs parameters of the data product and the status of
the modulus unit, the scheduler decides which operation(s) the compression
unit needs to perform. Secondly, it decides if and how the results shall be
transfered to the telemetry FIFO.

Only when the histogram window unit, the compression unit and the en-
coding scheduler finished their action will the data product scheduler initiate
processing of the next data product, or signal to the telemetry FIFO to close
the packet and send it out.

6.4 Encoding Format

The format of the encoder output may be best visualized with a table, Tables
14 and 15.

47

This first column is a range of input numbers, the third shows the result-
ing bit pattern. The second column shows the encoding error. The last two
columns compare the length of an unsigned number of that magnitude with
the length of the encoding.

Table 14: Encoding Format without Drop

input error encoding input/output length

0 +0 0 0/1

1-15 %0 1s0xxxx 4/7

16-31 =1 1s10xxx- 5/7

32-63 +2 151100xxx-- 6/9

64-127 +4 1s1101xxx--- 7/9
128-255 +4 1511100xxxx--- 8/11
256-511 +8 1511101xxxX-~-— 9/11
512-1023 =8 1s111100xxxxXX~~=~ 10/13
1024-2047 +16 1s111101xxxxx-—--- 11/13
2048-4095 £16 1s1111100xxxxxxX~—--- 12/15
4096-8191 +£32 1s1111101xxxxxx——---- 13/15
8192-16383 +£32 1s11111100xxxxxXX---=-- 14/17
16384-32767 +£64 1s11111101xxxxXXX-~————- 15/17
32768-65535 £64 1s111111100XXXXXXXX~~~-—-= 16/19
65536-131071 £128 1s111111101XXXXXXXX~~~===== 17/19

6.4.1 Encoding in Full Poisson Resolution

The number zero is represented by a single bit o.

All other pattern must start with a 1, followed by the sign of the input
value s. The rest of the pattern represents the absolute value of the input.

The length of the encoding depends on the number of bits needed to
represent the input. It is encoded in a stream of 1-s followed by a o0, followed
by another bit that tells if the length of the input value is even or odd.

After this length encoding follow a number of bits from the binary rep-
resentation of the absolute value of the input, starting with the bit after the
leading 1, obviously. These are marked x in the table. The dashes - represent
the bits from the input number that are not included in the encoding.

The first three lines represent special cases. Numbers in the range —15...15
are represented exactly, encoded in seven bits. Numbers up to 31 are also
encoded in seven bits but loose the LSB.

This encoding is denoted encodeg() in the previous section.

48

Table 15: Encoding Format with Drop=3

input error encoding input/output length

0-3 =£3 0 2/1

4-15 +4 1s0x--- 4/4

16-31 +£8 1510---- 5/4

32-63 +16 151100----- 6/6

64-127 £32 151101------ 7/6

128-255 +32 1511100x------ 8/8

256-511 +64 1s11101x------- 9/8
512-1023 +64 15111100xx------~ 10/10
1024-2047 +£128 1s111101xx-—------ 11/10
2048-4095 £128 1s1111100xxx-------- 12/12
4096-8191 £256 1s1111101xxx——---—--- 13/12
8192-16383 £256 1s11111100xxxX-~~-—-—-~ 14/14
16384-32767 +£512 1s11111101xxxx-————-—-—- 15/14
32768-65535 £512 1s111111100xxxXX~~——=—=—== 16/16
65536-131071 +1024 1s111111101xxxxXX-——————————~ 17/16

6.4.2 Encoding with Drop=3

Table 15 shows the ecoding with dropy,=3, i.e., each line has three fewer x
and three more -.

This encoding is denoted encodes() in the previous section. The compres-
sion scheme in this application does not use dropo=1 or drops=2.

6.4.3 Decoding

The decoder assumes that the first dash in a pattern is a zero, and all futher
dashes represent ones, i.e., it rounds pessimistically. The exception is the
non-normalized case of the second line, 1s00---. With drops=3 the three
dashes represent 101, i.e, the value 5.

6.4.4 NaN

In the case drops=0, two bit pattern represent redundant zeros: 1s00000. The
encoder does not generate these patterns.
The largest pattern emitted are 27 bits long

1s1111111111101XXXXXXXXKXXKXX————————————

for inputs in the range 33554432...67108863.

49

7 EEPROM

Each sensor unit is equipped with an EEPROM of size 128 kBytes, for per-
sistent storage of the sensor configuration. Storage space in the ICU is not
appropriate for two reasons: there is not enough space available, and there
are two ICUs where it is difficult to keep the configuration stores consistent.

The EEPROM content is not used directly by any logic in the FPGA. The
ICU is assumed to read the content at boot, check if it is valid, and use the
information to configure the sensor.

The EEPROM is connected to the data and address lines that also drive
the external SRAM, so that any access needs to go through the same memory
port arbiter. Most memory access ports to not provide access to the EEPROM
address space, the two exceptions are

e the memory readout unit described above, and

e the EEPROM page write unit.

7.1 EEPROM Page Write

The EEPROM chip is organized in pages of 128 Bytes. The page write unit
can write to a range of Bytes in a single page. It automatically performs the
magic incantations to turn the EEPROM into write mode, writes the desired
data, and waits for the prescribed period of time for the EEPROM to burn
the data into the storage cells.

7.1.1 Page Upload

A range of 16 command message addresses is used to upload data into the
128 Byte page buffer in FPGA internal memory. This memory is not EDAC
protected. The messages must be tagged for 64 bits data size, as each uploads
eight bytes. The bytes are ordered little endian.

Command message:

3 0x OEEa
| | | | | | | |

| | | | |
bytebs |

| blytle7§ || || | | blytlesfg || || blytle4§ |

11 blytlesﬁ [[blytI62§ 11 11 blytle 1§ [[blytleoﬁ 11

a represent four MSB [7:3] of the address in the page. The whole page can be
uploaded with 16 messages.

30

7.1.2 Page Write

A message to any address in the same range, but with size tagged for 32 bits
data submits the page to the EEPROM

Command message:

2 0x OEEx
| A I N N AN I N M M |

| .tI)ytle CIOlli[lt§ | I I S | Ipaigeladldr?Ssl10 11 Pytle aI.C].dlrelss’Yl

This command will be ignored if it is received less than 16 milliseconds since
the previous page write. The datasheet claims that the EEPROM needs at
most 15 milliseconds to complete a write. The flight EEPROM chip provides
a separate pin to indicate if it is busy. This pin is not used.

The page write is performed in four phases:

e A series of magic writes turns the EEPROM into write mode.

e Writing bytes to a range of addresses, all in the same page, i.e., only
the 7 LSB may change.

e About 100 us of inactivity convince the EEPROM that the page is com-
plete, so it starts the burning process.

e The actual transfer to the persistent storage takes up to 15 ms.

Obviously, the FPGA must perform the first two actions and then wait.

Writing data bytes starts at the page addressig,byteaddress; given. and
proceeds for bytecountg bytes, incrementing only the byteaddress;, which
may wrap around. At least one byte will be written, even if byte countg is
zero. It is not an error to wrap around and to write previously written bytes
again, but pointless.

The bytes will be read from the page buffer at the byte addressy, so if a par-
tial page shall be written, the data needs to be uploaded to the corresponding
location in the buffer. With byte countg>= 128, the initial byte address; does
not matter much.

7.1.3 Access Time

The memory driver implements access cycles that allow to drive an EEPROM
chip with up to 250 ns access time.

8 Inputs and Outputs

The 1/0 ports are

o1

e clock input,

e ICU asynchronous serial communication,

e synchronous serial ports to the analog board,
e external memory bus, and

e PWM output for the operational heater.

Table 16: Input and Output Ports

Name Dir 1/0 Standard EM pin Description

xclk in CMOS 101, CLKFP 48 MHz clock

ARxD in LV-PECL 217/216, HCLK deserializer data

ARxC in LV-PECL 229/228, HCLK deserializer clock

ATxD out LV-PECL 210/211 serializer data

ATxC out LV-PECL 208/209 serializer clock

Cx[1:2] in CMOS 147,119 PPS inputs

Rx[1:2] in CMOS 148,122 UART inputs

Tx[1:2] out CMOS 125,117 UART outputs

TxE[1:2] out CMOS 123,118 LVDS driver enables

RAMD([31:0] inout CMOS . SRAM/EEPROM address

RAMA[18:0] out CMOS e SRAM/EEPROM data

RAMnCE[0:3] out CMOS 242,240,47,50 SRAM chip selects

RAMDWE[0:3] out CMOS 51,234,112,113 SRAM write enables

RAMnOE out CMOS 241 SRAM output enable

EEPROM nCE out CMOS 38 EEPROM chip select

EEPROM nWE out CMOS 25 EEPROM write enable

EEPROM nOE out CMOS 34 EEPROM output enable

EEPROM nRES out CMOS 24 EEPROM reset output

EEPROM BUSY in CMOS n/a EEPROM busy

OHPWM[1:2] out CMOS 184,185 heater PWM output
8.1 Power

The RTAX FPGA core is powered with 1.5V, all 1/0 banks are powered with
3.3V.

92

8.2 The clocks

An external crystal oscillator is driving a CLKP input with Lv-CMOS signaling.
The frequency is 48 MHz. This clock is driving a global HCLK via an HCLKINT
buffer. This clock is called xc1k.

The input clock is devided by two, the 24 MHz clock is driven to another
global HCLK called mc1k.

The xc1k is used to drive the synchronous serializer towards the analog
board and so provide a clock to the analog board FPGA.

The HCLK inputs are used for the synchronous deserializer inputs from
the analog board. The deserializer uses the clock received there.

The mc1k drives all other logic.

8.2.1 TODO

The EM digital board uses the CLKFP input for the master clock. Future
revisions may move it to an HCLK input. The ARxD input need not use an
HCLK.

This move has not been implemented for the EM2 model RTAX proto
board, and will most probably not make it into QM and flight models.

8.3 ICU Asynchronous Serial Link

Communication with the 1CU requires four LVDS inputs and two LVDS out-
puts. The RTAX2000 chip supports the LvDS 1/0 standard, but we will not
use that for two reasons.

e LVDS requires an 1/0 supply voltage of 2.5V.

e There is a perceived risk to connect an external 1/0 line directly to the
FPGA.

External LvDS drivers/receivers convert CMOS levels to/from LvDS.
The ports are

e the PPS receivers Cx[1:2],
e the UART receivers Rx[1:2], and
e the UART transmitters Tx[1:2].

8.3.1 ICU Cold Redundancy

Two sets of LVDS lines connect to the cold redundant 1cus. The drivers for
each set share an LvDS driver/receiver chip. Each chip includes two drivers
and two receivers, one driver is unused.

33

8.3.2 Driver Enable

The LvDS driver can be disabled by the FPGA. These enables are connected
to the inverted value of confsig[5:4]. When all bits in confsig are reset at
boot, the drivers are enabled. The running 1CU may set the respective bit to
disable the driver for the other 1CU, to save power. This is not implemented
on the PQM.

8.3.3 LVDS Termination

The standard LvDS specification calls for loop current Iy, = 3.5 mA termi-
nated at the receiver with Rt = 100€2. The flight LvDs drivers will be imple-
mented with two chips UT54LVvDMO55LV. These chips drive a loop current
of I, = 10mA, and are supposed to be terminated with Rt = 35¢).

For interoperability with GSE and to minimize EMI emissions, the termi-
nation circuit shall be implemented as schown in Fig. 1, with en extra shunt
at the driving end, and a center tap on the receiver termination.

1
g o
c B
[%2]
— D) LL
£ £l J
© =0 Gld
< — 3
e
o
(&)
S
—

Figure 1: Proposed LvDS Termination Circuit.

The shunt limits the loop current to I, = 5mA and the voltage swing
to 500mV, closer to the standard. It also provides a backtermination to
swallow any backward traveling signal, from EMI or reflections.

The center tap on the split termination resistor terminates limits the

o4

common mode EMI at high frequency, to avoid stress on the reciever and EMI
susceptibility.

8.4 Synchronous Serial Ports

The communication with the analog board is accomplisched with synchronous
serial ports, with a data and a clock signal in each direction. LVDS signaling
shall be used to minimize EMI with the analog circuits, but proper LVDS is
not available. The RTAX FPGAs provide an LV-PECL 1/0 standard to be used
with 3.3V on the power lines.

S
(&S]
(]
c
FPGA S FPGA
o
2|
Rout]
I 8
/F 316 o]
e}
-
~ Rout g‘ & a
> 316
- |
u?

Figure 2: LV-PECL Termination Schematic

8.4.1 Termination

The Lv-PECL 1/0 standard will be used with slightly nonstandard voltage
swing and termination, to reduce power consumption and EMI. The outputs
have series termination resistors with R,,; = 316 (2, the input is terminated
with Ri,p, = 100€2. The current in the loop is

;_ Vewo 33V
© 2Rgu + Rip 7320

= 4.5mA

The voltage swing is
AV = xIR;,, = £450mV

which is well beyond the requirement mentioned in the RTAX datasheet.

95

8.5 Memory Bus

The external memory bus includes

address outputs RAMA[18:0],

bidirectional data port RAMD[31:0],

low active chip enables separate for SRAM and EEPROM, RAMnCE[0:3]
and EEPROMnCE,

e low active write enables, RAMnWE[0:3] and EEPROMnVE,
e low active output enables, RAMnOE and EEPROMnOE,
e a reset output for the EEPROM, EEPROMnRES.

The flight EEPROM chip provides a busy indicator, EEPROMBUSY, and a reset pin
EEPROMnRES. Engineering EEPROM do not provide EEPROMnRES nor EEPROMBUSY.
The memory driver does not make use of them.

The EEPROMnRES is controlled by confs[7], i.e., the EEPROM will be en-
abled when confsyg is cleared at boot. The state of EEPROMBUSY is available in
the register 0 readout.

The EEPROM in the PQM is not functional, because the write cycle time
of the driver is too short. It cannot be written.

The flight SRAM can be addressed byte-wise. The FPGA does not use that
capability. The four chip and write enables emit the same internal signals.
All access is full 32 bits wide.

8.5.1 Engineering Model Memory

Prototype and engineering models with RTAX FPGA use the board layout for
flight, but with the memory chips replaced by non-flight parts on a daughter
board. The daughter board is soldered on the footprint of the flight SRAM
and holds both a 16-bit SRAM and an EEPROM chip.

The EEPROM chip is functionally equivalent. The SRAM chips requires a
different memory driver that performs two physical 16-bit accesses for one
logical 32-bit access.

The additional address bit and the control signals are mapped to the
control pins of the fight SRAM footprint. The non-flight chips share the write
and output enables. This is supported by the mode in which the memory
drivers work.

8.5.2 Engineering Model 2 Memory

The second EM model uses the same non-flight memory chips, but two of
them, for real 32-bit operation. This setup operates with the flight mem-

56

Table 17: Engineering to Flight Mapping of Memory Ports

EM

A[0]
Al1]
Al2]
A[3]
Al4]
A[5]
Afs6]
A[T7]
A[8]
Af9]
A[10]
Al11]
A[12]
A[13]
Al14]
A[15]
A[16]
A[17]
A[18]
A[19]

FM

A[0]
Al1]
Al2]
A[3]
A[4]
A[5]
A[s6]
Al7]
Af8]
Af9]
A[10]
Al11]
Al12]
A[13]
Al14]
A[15]
Al16]
A[17]
A[18]
RAMnWE [3]

FPGA

57
o8
o8
60
o2
46
45
44
27
30
35
31
41
26
40
21
39
235
116
113

57

EM

D[0]
D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[8]
D[9]
D[10]
D[11]
D[12]
D[13]
D[14]
D[15]
n0E
nWE
RAMnCE

FM

D[5]
D[6]
D[7]
D[4]
D[3]
D[2]
D[1]
D[0]
D[8]
D[9]
D[10]
D[11]
D[12]
D[13]
D[14]
D[15]
RAMnOE
RAMnWE [0]
RAMnCE [2]

EEPROMnCE RAMnCE[0]

FPGA

83
110
111

82

81

68

93

56

15

14

13

12

9
8
7
6
241

51

47
242

ory driver. This provides the necessary testing before the design shall be
commited to flight chips.

8.5.3 Engineering Model 1 Memory

The first EM model has later been fitted with the same SRAM setup as EM 2,
and with a PQM EEPROM. The model now uses the flight memory driver and
confirms the functioning of the flight EEPROM.

8.6 PWM output

The pWwM output for the operational heater is avialable in both polarities.
The inverted pin is not connected on the digital board.

The idea was to use AC-coupling, rectification and filtering to drive the
gate of an n-MOSFET. The heater would turn off if the output is stuck either
high or low. The EM board layout supports such a circuit. But the gate
voltage does not reach the required values.

The PwM output shall be filtered such that the mean output voltage
drives the gate of the heater transistor.

8.7 Device Pinouts

9 Implementation Details

This section is decidedly incomplete. It may get expanded ...

9.1 External Memory Access

The digital board FPGA has access to external memory chips through a com-
mon bus. Several logic units need access to the memory for read and/or
write. Memory arbitration units provide prioritized access to multiple mem-
ory ports.

During development of the logic, and for prototype models, several dif-
ferent memory architectures were employed. The arbitration units drive an
abstracted memory interface to a memory driver. The driver can be trans-
parently substituted for any physical memory architecture in use.

Some memory access need EDAC protection, some do not. Direct access
is granted by the primary arbitration unit, which interfaces to the driver of
the physical memory. EDAC protected access is granted by the secondary

a8

arbitration unit, which interfaces to a virtual memory driver. The physical
port of the virtual memory driver connects to a memory port of the primary
arbitration unit.

The primary memory is accessed in units of 32 bit words. EDAC protected
access yield words with 26 bits, six bits are used for EDAC redundancy.

9.1.1 Memory Port to Arbitration Unit Interface

The arbitration units are configured for the required number of ports. For
each port a req input is provided, a high level indicates the desire to perform
an access. Access is granted to each port via the ack output. When ack is
high, the port must put the addryg, write, and datags on the global bus.

For read access, the arbitration unit provides a val output to each port,
to tell when the returned data is valid for that port. There is a global data
output port g3s, and the data is valid for only one mcik cycle.

To avoid deadlocks, each port is supported with a pending output that
indicates that a read is pending for that port. The idea is that val is used
to trigger the use of the returned data, but use pending to perform state
transitions in the scheduler. pending is implemented with a guarantee that is
will deassert eventually. Waiting for a missed val may take forever.

9.1.2 Memory Driver Interface

The memory driver is signaled with a pulse on go from the arbitration unit
to execute an access cycle. The driver responds by asserting busy until is is
ready to accept the next go. busy will be deasserted for the cycle before the
next go may be issued. If the cycle time is only two clock cycles the busy
will not be asserted.

For read access, the driver issues a pulse on valid one cycle before the
data on q3o is valid. pend is asserted between busy and valid if necessary.

9.1.3 Memory drivers
Several memory drivers have been written, some of them used on prototype
units.

memasync32: Asynchronous SRAM with 32 bit data bus. Two mclk cycles per
access. Can drive the flight SRAM.

memasync32ee: Asynchronous SRAM with 32 bit data bus and EEPROM con-
nected to the MSB of the data bus. This is the flight memory driver for
the digital board. The driver needs two mclk cycles for SRAM access.

29

EEPROM access can be synthesized for 24 MHz or 48 MHz mc1k to use 7
or 15 mclk cycles.

This driver is used on the second engineering module to drive a pair of
16-bit SRAM.

memasyncl6ee: Asynchronous SRAM with 16 bit data bus and EEPROM con-
nected to the LSB of the data bus. This driver needs two physical SRAM
accesses for one logical cycle. It is used on the engineering models where
the SRAM is substituted by a 16-bit version.

The 24 MHz variant issues a physical access cycle in every mclk, it uses
the xc1k at 48 MHz to do the timing of the control signals. The driver
is as fast as the flight driver in this case.

The 48 MHz variant needs two mc1k cycles for each physical access, four
cycles for a logical cycle.

EEPROM cycles are the same as for memasync32ee.

memasync8: This driver is used on SIRENA boards with a rather slow asyn-
chronous SRAM with 8-bit data bus. A physical access cycle requires
four mc1x cycles, or one more to switch data bus direction. A logical
cycle requires four physical cycles, obviously.

memasync8m: This driver is used on the FLYRENA prototype digital board. The
SRAM chip is the same as on the SIRENA. 16 bits of the address bus are
multiplexed on the data bus into external latches. A physical access
cycle requires at least four mc1k cycles, more if the address latches need
update, or to switch data bus direction. A logical cycle requires four
physical cycles.

mem26edac: Virtual driver, that connects the secondary arbiter for EDAC ac-
cess to the primary arbiter. This driver also takes care of the hamming
coding and error correction, but is does not automatically rewrite cor-
rected errors into the SRAM.

9.1.4 Memory Port

Memory port modules interface between the clients and the arbitration unit.
A client issues an access request with a pulse on aen and/or den. The memory
addrig must be provided together with aen. den initiates a write cycle, the
datags must be provided as the same time. den without aen reuses the last
address. This is convenient for read—modify—write cycles.

The port module asserts busy until the request was accepted by the ar-
bitration unit. For read cycles a ppend signal is asserted as well until busy
is deasserted. ppend must be combined with the arbiters pend to wait for

60

outstanding reads to finish.
The memory port units take care to deliver addryg, write, and datags to
the arbiter and memory driver at the correct time.

9.1.5 Memory Port Priorities

The primary arbiter supports four memory ports, the secondary arbiter sup-
ports three EDAC protected ports, from highest to lowest priority

1. write only port for PHA data storage,
2. write only port for EEPROM page writes,

3. secondary arbiter for EDAC access,

(a) histogram counter increment port,
(b) data compression state memory port,

(¢) histogram window sum port,

4. read only memory telemetry readout port.

Data acquisition ports are higher priority than telemetry readout ports. The
gaps between processed triggers should not interfere with the timely execu-
tion of checkout activity.

EEPROM write have a rather high priority, to make sure there are no gaps
between write that make the EEPROM think the page is complete and can be
burned. A histogram window sum could easily block access for long enough
if it were higher priority than the EEPROM write.

9.1.6 Memory EDAC

Six Hamming code bits can protect at most 26 data bits, and can be stored
together in a 32 bit memory word. The data bits are located in the physical
memory word in their natural order, i.e., the binary digits of the bit number
indicate the parity bits that the bit position contribute to. Bits 1, 2, 4, §,
and 16 contribute to only one parity, so these bits are five of the six hamming
codes. Bit number 0 is the sixth parity bit, to which all bits contribute that
have an even number of 1s in their bit number.

All physical bits contribute to an odd number of parity bits, the stored
parity is even, i.e., when the parities are calculated for reads, they must come
out zero. When a single bit is flipped, an odd number of parities are wrong.
The five upper parities encode the flipped bit’s number. When two bits are
flipped, an even number of parities are wrong, indicating an uncorrectable
error.

61

The data bits are at the bit positions with two or more 1s in their bit
number, 3, 5-7, 6-15, and 17-31. All this is important to know if an EDAC
protected memory is read for diagnostic telemetry.

9.2 UART

The Universal Asynchronous Receiver and Transmitter operate at the bit
rate of 115200 baud. Reprogrammable prototypes may be configured to
operate at 1.5 Mbaud, or even 3 Mbaud with 48 MHz mc1k, for calibration
runs with high data rates.

The asynchronous serial receiver is designed to be very picky. The bit
levels must be stable for half a bit period. This is to avoid accepting noise
in the inactive line as input. The downside is that the bit rate must match
the nominale rate of 115200 baud within 1.5 %.

9.2.1 Baud Rate Generator

The bit clock is provided by the fractional baud rate generator. For the
receiver, a clock with 16 times the bit rate is provided. The tranmistter is
running from a clock with the nominal bit rate.

The generator has three parameters, DIV, FRAC, and BAUDMODULO. The input
clk is McLK = 24 000 000. The receiver bit clock is

MCLK

FRAC
DIV + 5AUpMODULO

16 x BAUD =

For the desired bit rate BauD = 115200, the parameters can be derived as

MCLK
DIV = ————
16 x BAUD
MCLK X BAUDMODULO
FRAC = — DIV X BAUDMODULO
16 x BAUD

with DIV rounded towards zero. BAUDMODULO shall be chosen that the division
in the formula for FRAC yields an integer number. With BAUDMODULO = 48 we
get

24000 000
DIV = ——— =13
16 % 115200
94000000 x 48
_ 13x48=1
FRAC 16 x 115200 548

The resulting baud rate is exactly 115200 baud, as precise as the crystal
oscillator. This must be hardwired into the FPGA, obviously.

62

The 1cU cannot provide exactly 115200 baud. Their algorithm is

1
(x +1) x 300ns’

BAUD(x) =

and with z = 28, we get BAUD(28) = 114 942.53 baud. The baud rate generator
in the FPGA has been instantiated with the following parameters:

BAUDMODULO = 240
Ly _ 24000000

16 x 114942
24000000 x 240

= —1 240 = 12

FRAC 16x 114040 12X 240
resulting in a bitrate of
1 24
BA — 24000000 = 114942 .53.

D= —_—
16 13+ 55

This is close enough to work with GSE that provide exactly 115200 baud,
and matches the 1CU bitrate exactly.

9.2.2 Abort Sequence

The logic in the FPGA has been carefully designed from the start to not ever
lock up in an unresponsive state. Especially the UART receiver must have
this property, since there is no RESET facility, except for a power cycle that
can force the system out of such a state. When the UART and the message
receiver respond, it is possible to send a master control message to reset any
misbehaving unit, but that should never be necessary.

Well, you never know. The UART monitors the received input for a special
sequence that will issue an attn signal to the core logic. The sequence consists
of three character <LF>, A’ "1, followed by a <break>, i.e., a zero with a
frame error. A <break> is not part of any nominal message, so the sequence
cannot match by accident.

The attn signal has almost the same effect as a strobesgs[0].

9.2.3 PPS Receiver

The PPS receivers performs stringent checks before the pulse is accepted and
forwarded to the core logic.

e The length of the pulses must be between 1 us and 500 us.

e The time between pulses must be a multiple of a second within 5.5 ms.

63

To be precise, a rising edge on a Cx line is considered a valid PPS, if

e the time between the previous rising edge and the previous falling edge
is at least 1 us and at most 500 us, and

e the time between the previous rising edge and this rising edge is a
multiple of a second, with a total error of not more than 5.5 ms.

The delivery of the PPS to the core logic is delayed by about ten mclk cycles,
about half a us.

There are two PPS receivers that are accepting pulses. When both re-
ceivers see good pulses, the selection will not switch between them, but con-
tinue to use the one that came online first. The period between PPS may
be any multiple of a second. If the active source becomes quiet, the channel
is still marked good, because no bad pulse was received. This prevents the
switch to the receiver that is still sending.

This misfeature was corrected in version v04. A channel is considered
inactive after two good pulses were received on the other channel since the
last pulse was received.

9.3 Serializer/Deserializer

10 Changelog

Current SVN Revision 8147 .

SVN Revision 4005

Section 2.6.3
Update strobesgs and enablesg allocations.

Section 3.2
Update register readout allocations, scratch register, two UART status
registers, move heater register.

Section 3.2.1

Add miscg register for chip periphery status, i.e., EEPROM BUSY.
Section 3.2.4

Move and update UART status register description.

Table 4
Add counter 60: Streaming mode: packet lost.

64

Section 3.4.5
Add scratchgy register description.

Section 3.7.1
Update for register reallocation.

Section 4
Update for strobesgs and enablesg reallocations.

Section 6.3.3

Mention that there are four available representations for count rate

numbers.

Section 8.3.2
Describe the LvDS driver enable bits.

Section 8.5
Describe the EEPROMnRES bit.

Section 8.5.3
Describe rework of EM 1 with PQM EEPROM.

Section 9.2.1

Update the baud rate generator parameters for the real 1cU-supported

values.

Since SVN Revision 2415

Section 9.2.3
Add note about changed PPS source selection.

Section 8.5.2
EM2 memory driver.

Section 3.2.4
Register 4 definition.

Section 2.6.5

Explain high speed calibration mode implementation.

old section that outlined a different implementation.

Section 3.3.1
Sparce count rates via ress.

Since SVN Revision 2268

Section 3.2.1
Use statesg as FPGA and version identification.

65

Removed the

Section 3.3
Science data header format.

Section 3.2.3
Explain time.
Section 3.3
Remove B bit, add f1gs.
FPGA design change: Data products header is always 8 bit, with init
and fini modulus, and two informational flag bits.

Section 5
Fix: maxg — ming were swapped.

Since SVN Revision 2249

Titlepage
Change Document code: SO-EPD-KIE-DA-0001 Issue 1 Rev 0.

Document
Minor spelling fixes and clarifications.

Section 3.2.1
errorsg[5:4] documented.

Section 3.3.3
Add byte aligned, uncompressed histogram data.
Floating point format, 16-bit unsigned.

Section 4.3
Seven EDAC bits in L3 register words. Mention the instruction set
manual.

Section 7.1.2
EEPROM page write waits 16 milliseconds.

Table 17
EM memory pins table fixed.

Section
Calibration Mode Analog Data Streaming added.
This section was later removed.

Section 9.1.3

Memory driver memasynci6ee drives 16 data pins.
Memory driver memasync8 is operational in SIRENA.

66

Since SVN Revision 2230

Section 3
Memory readout command is 0x 05zx.

Since SVN Revision 2118

Titlepage
Add Document code: SO-EPD-KIE-DA-0001 Issue 0.

Since SVN Revision 2110

Section 8.3.3
LvDs Termination, added, with Fig. 1.

67

