Solar Orbiter Level 3 Trigger
Instruction Set
Stephan 1. Bottcher

Revision 5980
Date 2017-03-23 14:31:25 +0100 (Do, 23 Mér 2017)

Contents

1 Architecture 3
1.1 Imnstruction Memory 3
1.2 Registerso 3
1.3 Status Bits 3
1.4 Conditional Execution 3
1.5 Input o 4
1.6 Output 4

2 Opcodes 5
21 ADD . .. 6
22 ADDI 7
2.3 BITC ... 8
24 BITS 9
25 BRNGo 10
26 CMP 11
2.7 GOTO 12
2.8 HIST 13
2.9 LOG 14
2.10 MULL oo o 15
211 NOP . . . oo 16
212 PHA . . . 17
213 POKE 18
2.14 STOP o 19
215 SUB . . . 20
216 TRIM o 21

217 Syntax 22

Assembler 23
3.1 Assignments 23
3.2 Expressions 23

3.2.1 Register expressions 24

3.2.2 Functions 24
3.3 Directives 24
3.4 Opcode Statements 26
3.5 Conventions 26

1 Architecture

1.1 Instruction Memory

The Instruction Memory has room for 1024 opcodes with size 32 bits. The
Processor can start executing at any address that is a multiple of 256, i.e.,
at four entry points hex 0x000, 0x100, 0x200, and 0x300.

The Level 2 trigger shall choose the entry point for each trigger event.

1.2 Registers

The L3 processor has 256 registers. Each command stores its result into
the register identified by the eight LSB of the command address. The only
exception is the POKE opcode!, which stores the result into Ry.

An opcode may use the values of up to two registers, R, and R,

If a register is required that is located one or two addresses before the
current opcode address, the value will not be fetched from the register file,
but uses fastpath state stored in the execution unit.

This may lead to undefined behaviour if the opcode was reached by a
recent GOTO, so that the state in the execution unit does not match the
register contents. Don’t do that.?

The data word size of the registers is 29 bits.?

1.3 Status Bits

In addition to the registers, the processor maintains state in two status bits.
The status bit ¢ is changed by the cMP opcodes and by the BITC opcode.
The status bit s can only be changed by the BITS opcode.

1.4 Conditional Execution

Every opcode is executed conditionally, depending on the cy condition bits
in the opcode and the status of ¢ and s. The conditions are

Lor any future extension derived by defining reserved bits of the POKE opcode

2Tt may be safe and well defined if the target of a GOTO refers to R[.—1) to get the result
of the opcode executed just before the GOTO.
3The physical memory size is 36 bits, with 7 bits used for EDAC.

cs mnm condition

00 always
01 ifS S is set
10 ifN C is not set
11 ifC C is set

The result of an opcode that does not meet the condition is the result of
the previously executed opcode. This is also true after a GOTO. A POKE
opcode that does not execute stores its result into the registers identified by
its address, not to the poke destination.

1.5 Input

The event data is loaded into the last 32 registers from address hex Oxe0
to Oxff before the execution is started.

1.6 Output

Two opcodes produce output. HIST is equivalent to an ADD or SUB, and the
result will be provided to the outside, to be interpreted as an address to the
histogram memory that shall be incremented.

PHA is similar to an ADDI, and the result shall initiate and guide the
storage of the raw event data.

2 Opcodes

STOP cc00 0000 0--= —-=== —=== —=== ———— ———-
NOP cc00 0000 10-- -=-== —=—== ——== ———= ———-—
GOTO ujyg cc00 0000 11-- --uu uuuu uuuu ---- —---
LOG R. cc00 0001 -——= ———= ——== ———— XXXX XXXX
POKE Ry =R, cc00 0010 ---- —-—-- dddd dddd xxxXx XXXX
BITC Rx{ug)} cc00 0011 n0SC ---- ——- U Uuuu XXXX XXXX
BITS Rx{ug,} cc00 0011 ni1sSC -—-- ——- U uuuu XXXX XXXX
BRNG Rx{V5 : u5} cc00 0100 ——-—- -- VV VVVU UUUU XXXX XXXX
TRIM Rr,ug,Vg cc00 0101 vvvv VVVV uuuu uuuu XXXX XXXX
MULI R, *mjo > ey cc00 0110 eeee mmmm mmmm mmmm XXXX XXXX
PHA R, + ue ccO0 0111 uuuu uuuu uUUUU UUUU XXXX XXXX

ADD R; > is+ Ry > j, cc00 1000 yyyy yyyy jjjj iiii xxxx xxxx
SUB R, > 14— Ry > j, cc00 1001 yyyy yyyy jijjj iiii xxxx xxxx
HIST R, > iy + R, > j, cc00 1100 yyyy yyyy jjjj iiii xxxx xxxx
HIST R, > i, —R, > j, cc00 1101 yyyy yyyy jjjj iiii xxxx xxxx

CMP R, 4+ ug <=> Ry ccO01 Oooo yyyy yyyy UuUU uUUUU XXXX XXXX
CMP R, <=> Ry + ug ccO0l looo yyyy yyyy uUuuu uuul XXXX XXXX
ADDI R, + i ccli iiii iiii iiii iiii iiii xxxx xXXX

o is a condition, depending on two status bits ¢ and s. u,, v,, m,, and e,, are
unsigned integers. i, and j, are signed 2s-complement numbers. Negative
shifts shift into the opposite direction. <=> is any comparison operator,
encoded in o3. Unassigned - bits are reserved and should be zero. Future
extensions may define additional opcodes where some of the reserved bits are
Nnon-zero.

2.1 ADD
|C|2|OIOI1IOIOIO| [|R|y| [|j|4| |i|4| [|R|“

Syntax:
ADD Ry > iy + Ry > j,

Result: . _
R,271 4+ R,-27J4

Effect:
Add two register values, each may be shifted before addition by up to
eight bits to the left or seven bits to the right.

Caveats:
The result is properly sign extended and overflow is prevented.

Parser:
ADD (RSPEC) [(BSHIFT)] *+* (RSPEC) [(BSHIFT)]
(BSHIFT) : {’<<’|’>>>} (MEXPR)

2.2 ADDI

Lo 1,

Syntax:
ADDI R, + io
ADDI R, — i9g

Result:
R, +in

Effect:
Compute the sum of a signed constant and a register value.

Caveats:
The result is properly sign extended and overflow is prevented.

Parser:
ADDI (RSPEC) [{’+’|’-’} (EXPR) |

Operators in (EXPR) bind stronger than the initial {’+’|’-7}.

2.3 BITC
|c|2|0|0|0|0|1|1|n|0|0|0| L1 us Rr"”

Syntax:
BITC [*7’] Ry{us}

Result:
R,

Effect:
Set the status bit C to the [inverted] value of a bit us from R,. The
value is inverted, indicated by ~, when the bit n is set in the opcode.

|CI2|0|O|0|0|1|1|n|0|0|1| | N S N S | | 1 11 1| IRxI [
Syntax:

BITC [7] C
Effect:

Set the status bit C to the [inverted] value of C.
|CIQ|O|O|O|O|1|1|n|O|1|O| | | | | | | | | | | | | | IRII | |
Syntax:

BITC [7] S
Effect:

Set the status bit C to the [inverted] value of s.
|(:I2|0|0|0|0|1|1|n|0|1|1| | N S N S | | 1 11 1| I]lel [
Syntax:

BITC [7] 0|1
Effect:

Set the status bit ¢ to 0, or [1].

Caveats:

There is no syntax support to select R, when testing the status bits or

constants.
Parser:

BITC =] (RSPEC) *{’ (EXPR) ’}’
BITC [:~:] { i ox | g | ’0? | 110 }

2.4 BITS
|c|2|0|0|0|0|1|1|n|1|0|0| L1 us Rr"”

Syntax:
BITS [7] Ry{us}

Result:
R,

Effect:
Set the status bit s to the [inverted] value of a bit u; from R,. The
value is inverted, indicated by ~, when the bit n is set in the opcode.

|CI2|0|O|0|0|1|1|n|1|0|1| | N S N S | | 1 11 1| IRxI [
Syntax:

BITS [7] C
Effect:

Set the status bit s to the [inverted] value of c.
|CIQ|O|O|O|O|1|1|n|1|1|O| | | | | | | | | | | | | | IRII | |
Syntax:

BITS [7] S
Effect:

Set the status bit S to the [inverted] value of s.
|(:I2|0|0|0|0|1|1|n|1|1|1| | N S N S | | 1 11 1| I]lel [
Syntax:

BITS [] 01
Effect:

Set the status bit S to 0, or [1].

Caveats:

There is no syntax support to select R, when testing the status bits or

constants.
Parser:

BITS [*~°] (RSPEC) *{’ (EXPR) ’}’
BITS [:~)] { okl ’ ’g) | 0 | 110 }

2.5 BRNG

|C|2|0|0|0|1|0|0| L1

Syntax:
BRNG R{vs:us}

Result:
when vs > us : R, with all bits except {vs : us} cleared
when vy < us : R, with bits {us — 1 : v5 + 1} cleared

Effect:

Return the value of R, with some bits masked out.
Parser:

BRNG (RSPEC) *{’ (EXPR) [*:* (EXPR)]’}’

10

2.6 CMP

| G2 |0|1|0| 3, |

Syntax:
CMP R, +ug < R,
CMP R, +ug =Ry
CMP R, +ug <R,
CMP R, +ug > Ry
cMP R, +us # R,
CMP R, +ug > Ry

| G2 |0|1|1| 03, |

Syntax:
CcMP R, < R, + ug
CcMP R, = R, + ug
cMP R, <R, + ug
cMP R, > R, + ug
cMP R, # R, + ug
cMP R, > Ry, +ug

Result:
R,

Effect:
Set status bit ¢ to the result of the comparison.

03 =00000: O 03 =00100: >
03 =0b0001: < o3 = 00101 : 7é
03 =0b010: = 03 =0b110: >
03 =00011: < o3 =0b111: 1

Caveats:
o3 = 0b000 is always false, o3 = 0b111 is always true. There is no
syntax to support these cases. Use BITC.

Parser:
cMP (RSPEC) [{*+’|’=’} (EXPR)] (COP) (RPEC)
cMP (RSPEC) (COP) (RPEC) [{’+’|’-?} (EXPR) |
<COP> : { 10 ’) == | rg=) ‘ IS0 ’)= | y>=) }

Operators in (EXPR) bind stronger than the explicit operators.

11

2.7 GOTO
| G2 |0|0|0|O|0|0|1|1|'|'|

|||||uilO

Syntax:
GOTO uyg

Result:
The previous opcodes result.

Effect:
Continue execution at address ujg.

Caveats:

A taken GOTO causes a pipeline flush. GOTO target opcodes may get
confused by the register fastpath.

Parser:
GOTO (RSPEC)

12

2.8 HIST
|C|2|OIOI1I1IOIO| [|R|y| [|j|4| |i|4| [|R|x

Syntax:
HIST R, > 14 + Ry > j,

Result: . .
R,271 4+ R,-27J4

Ry

| G2 |0|0|1|1|0|1

Syntax:
HIST R, > 14 — R, > j,

Result: _ .
R,-27 1 — Ry-2’34

Effect:
Same as ADD or SUB. The result is transferred to the histogram memory
as the address of a counter to be incremented.

Parser:
HIST (RSPEC) [(BSHIFT)] {*+’|’=*} (RSPEC) [(BSHIFT)]
(BSHIFT) : {’<<’|’>>’} (MEXPR)

13

2.9 LOG

|C|2|0|0|0|O|0|1| L1

Syntax:
LOG R,

Result:
161og, (2R, + 0.99). If R, < 0 return 0.

Effect:

Computes the logarithm of the value of R,.

Parser:
LOG (RSPEC)

14

2.10 MULI
|C|2|0|0|0|1|1|O| L& |

Syntax:
MULI R, *xmio > ey
MULI R, * (float)

Result:
R, * %
Effect:

Multiply R, with an unsigned constant.

Caveats:
No overflow checks. A (float) may be given instead of the explicit
mantissa and exponents of the factor. The assembler will compute the
best representation of the (float) in terms of mjs and ey.

Parser:
MULI (RSPEC) ’%’> (MEXPR) [>>>’ (AEXPR) |

The explicit toplevel operator ’*’ binds stronger than the explicit >>>”.

15

2.11 NOP

| G2 |O|O|0|O|O|O|1|O|'|'

Syntax:
NOP

Result:
The previous opcodes result.

Effect:
None. May be useful as a GOTO target.

Parser:
NOP

16

2.12 PHA

|CI2|0|0|0|1|1|1| | | | | | | Iu]‘ﬁl | | | | | | | | IRII | |
Syntax:
PHA R, + uyg
Result:
Rx + ug
Effect:

Like ADDI, the result is transmitted to the event data storage unit, to
guide the storage of Pulse Height Analysis records.

Caveats:
The constant uyg is unsigned.

Parser:
PHA (RSPEC) [{*+’|’="|",’} (EXPR) |

Operators in (EXPR) bind stronger than the initial {’+’]’~-}.

17

2.13 POKE
|C|2|0|0|0|O|1|0| L1 Ra Rr"”

Syntax:
POKE Ry = R,

Result:
None

Effect:
Stores the value of R, into register Ry, but not into the normal re-
sult register identified by the instruction address. If the condition is
not true, the last opcodes result will be stored into the normal result
register.

Parser:
POKE (RSPEC) >=’ (RSPEC)

18

2.14 STOP
| G2 |0|0|0|O|0|0|0|'|'|'

Syntax:
STOP

Result:
The previous opcodes result, but who cares?

Effect:

The execution of the trigger processor stops. The processor becomes
ready for a new event.

Parser:
STOP

19

2.15 SUB
|C|2|OIOI1IOIOI1| [|R|y| [|j|4| |i|4| [|R|“

Syntax:
SUB R, > iy — Ry, > j,

Result: . _
R, 2714 — Ry-2_34

Effect:
Subtract two register values, each may be shifted before subtraction by
up to eight bits to the left or seven bits to the right.

Caveats:
The result is properly sign extended and overflow is prevented.

Parser:
SUB (RSPEC) [(BSHIFT)] -’ (RSPEC) [(BSHIFT)]
(BSHIFT) : {><<’|’>>>} (MEXPR)

20

2.16 TRIM

|C|2|0|0|0|1|0|1| L V8 us

Syntax:
TRIM R,, ug, Vg

Result:
when R, < ug : 0
when ug < R, <ug+vg: R, —ug
when vg < R, Vg

Effect:

Return R, limited to a range, offset to zero.

Parser:
TRIM (RSPEC) *,’ (EXPR) *,’ (EXPR)

21

2.17 Syntax

Optional parts are set in square brackets [...]. Parts set in double square
brackets may appear any number of times. Alternatives are set in curly
brackets and separated by bars {...|...}.

(LINE) : [{ (ASSIGN) | (COMMAND) | (DIRECTIVE) }| [{*#> | >"""> } (COMMENT)]
(ASSIGN) : (ID) >=> (EXPR)

(COMMAND) : [(ID) ="] [(COND) | (INSTR)

(COND) : [{ 7ifC’ | 7ifS> | 74N’ | 2if1 }]

(INSTR) : (MEMONIC) | (PARAMETERS) |, see previous sections

(EXPR) : (AEXPR) | {?<<’ | »>>’} (AEXPR) |

(AEXPR) : (MEXPR) [[{?+’|’-"} (MEXPR) ||

(MEXPR) : (EEXPR) [{*x> | >/*} (EEXPR) ||

(EEXPR) - [[{"+’]" =] *} [{{ID) | (NUM) | (REG) | (FUNC) | >’ (EXPR) *)’ }
(RSPEC) : (EEXPR)

(REG) : R’ ’ [’ (EXPR) °1’

(ID) : */[.a-zA-Z] [.a-zA-20-9_]+/’

(NUM) : float(-) | int(-, 0)

(FUNC) : >$> (ID) >’ (EXPR) [[’,’ (EXPR)]| *)’

(CEXPR) : (EXPR) || (COP) (EXPR) |]

Expressions can have three different types, integer, float, and register. An
(RSPEC) must be of type register. All other expressions in (PARAMETERS)
must be integer, except for a MULI factor without explicit shift, which may
be a float.

22

3 Assembler

The assembler 13. py parses a program and yields the opcodes in hexadecimal
notation. A program consists of a stream of lines. A line can be

e a comment,

e an assignment,

e a directive,

e an opcode statement.

A comment is a line that contains only whitespace up to the first # character.
Other lines may contain comments after a #, except for some directives.

A sequence of three double quotes is also treated as a comment, up to
the end of the line. This allows to hide assemby statements from Python, for
example to load constant definitions into a python script.

3.1 Assignments

An assignment has the form
(identifier) = (expression)

An (identifier) is a name composed of letters, digits, underscore and periods.
It must not start with a digit. Case is significant.

The period by itself is an identifier that represents the current instruction
memory address. This can and should be the target of an assignment. The
address increments after each opcode instruction.

Identifiers may be redefined. The last definition preceding the current
line is used. Identifiers subject to a .forward directive shall not be explicitly
defined multiple times.

3.2 Expressions

An (expression) can be composed of identifiers, numbers, function calls and
register addresses, combined with operators and parenthesis.

Numbers can be any Python integer constants or floats. Floats are not
supported everywhere. Floats are mostly useful as arguments for the MULI
opcode, directly or via identifiers.

23

3.2.1 Register expressions

A register value represents a command address and its associated result reg-
ister. An expression of type register is any identifier that represents such a
value, or a term of the form R[({expression)]. The difference of two register
values is an integer. The sum of a register and an integer is a register. No
further math is allowed with register values.

To cast any expression to a register, put it into an R[]1. To cast a register
expression to an integer, subtract R[0].

3.2.2 Functions

An expression can call functions. Function names must be preceeded with a
$ sign.

$LOG(): compute a logarithm base 2, just the same as the (LOG) instruction,
yield an integer.

$1og2(): compute the logarithm to base 2, yield a float.
$floor(): yield an integer.
$ceil(): yield an integer.

$power (b,x): compute the power b”.

3.3 Directives
A directive starts with one of the following reserved identifiers:

.print (text)
Print the remaining line to the diagnostic output. Substrings of the
form $IDENDIFIER or ${IDENTIFIER} are substituted by the value of the
identifier, which must be defined.

.include (filename)
The rest of the line must be a filename. The directive is replaced by
the contents of the file. Includes can be nested to any depth.

.forwardfile (filename)
Open an auxiliary file for forward declarations.

The rest of the line must be a filename that may not necessarily exist
and that may be written or replaced by the assembler at the end of the
compilation.

24

The contents of the file is included, if it exists. A new file is opened for
writing, with .new appended to the filename.

At the end of the compilation the new file replaces the old one when
any .forward mismatches were detected.

.forward (identifier)
Declare a identifier that is used before it is defined.

A .forwardfile directive must precede any .forward directive.

The next token on the line must be an identifier. If the identifier is
not defined, it will be defined with the value 0. The identifier is then
marked as a forward declaration. If the identifier is later redefined, an
assignment will be written to the forwardfile. If the new value differs
from the old value, a warning is emitted, and the forwardfile is marked
for replacement.

In the first assembly run, the forwardfile will not exist, most forward
declarations will mismatch, and the new forwardfile will be saved. In
the following runs, the forward declarations will be defined by the in-
clusion of the existing forwardfile. Unless the program changed, no
mismatches will happen, and the program will assemble properly. The
forwardfile will not be replaced, to not confuse the Makefile.

.name (identifier)
Set the name of the current source file, to assign a version to this source.

.version <t6xt>
Set the version string for this source file. Put the Subversion $Revision$
on this line.

.if (expression)
.ifdef (identifier)
.ifndef (identifier)
.elseif (expression)
.else

.endif
Conditional assembly.

25

3.4 Opcode Statements

An assembly statement has the form
[(identifier) =] [(condition)] (mnemonic) [{arguments)]

with optional items in square brackets. The optional assignment defines the
identifier with the value of the instruction address. It is shortcut for an
assignement

(identifier) =.

preceding the assembly statement. The identifier can later be used as a
register specification or GOTO target.

The (condition) can be if1, ifc, ifN, or ifs, and defaults to if1 (uncon-
ditional).

The (mnemonic) is a reserved identifier, all uppercase letters, any of the
names of the opcodes described in the previous section.

The (argument), if any, contains constants, register specifications, and
punctuation according to the syntax described above for each opcode.

A register can be specified as an identifier, or as

R[(ezpression)]

with literal uppercase r and square brackets. The expression must resolve to
the register address. Two higher bits are ignored.

Any constant can be specified as an (expression).

Most constants with the associated operators in the syntax definitions
are optional and default to a neutral value.

Some register specifications are optional and default to the identifier z.

3.5 Conventions

Programs should start with
Z = SUB .-.

to initialize a register with value zero.

26

