
Analytical search
for optimal flight DIRENA coefficients

Stephan I. Böttcher
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Figure 1: Balanced solution with partial pole-zero correction.
τ = 2.2µs, τr = 1000µs, τf = 0.36µs,
ai=[0,−1, 0, 0, 3, 3, 2, 0, 1,−3,−3,−3,−2, 2, 1, 0],
bi=[0, 1, 1, 2, 2, 0,−1,−3,−2, 0, 0, 0, 0, 0, 0, 0],
b = 0.360 %, Amax = 6.110, n = 1.27, p = −1.6 %.
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1 HET/EPT Flight DIRENA

For the HET/EPT sensor units, a DIRENA type readout is proposed for the
silicon detectors and photodiodes. The charge signals will be amplified by
discrete preamplifiers, and shaped with one or two shapers. In case of two
shapers in parallel, one will have a gain of one for the pulse amplitude, the
other one a gain around 16, to increase the dynamic range.

The shaper outputs will be continuously digitized by low power serial
ADCs. Further shaping, peak detection and trigger discrimination will be
performed digitally by an FPGA.

1.1 Algorithm

The DIRENA computes two linear combinations A and B from a subset of
the history of the sampled pulse waveform. si shall be the digitization result
sampled i conversions in the past, stored in a ring buffer. This computation
is performed after every ADC conversion:

A =
∑
i

aisi (1)

B =
∑
i

bisi (2)

with the coefficients ai and bi. The sums of the coefficients are normalized
to zero: ∑

i

ai = 0 (3)∑
i

bi = 0 (4)

so that the linear combinations are zero in the absents of a pulse, and pro-
portional to the pulse height when a pulse is present at a given phase.

The coefficients shall be chosen such that A becomes large for a pulse
close to the nominal phase, while B is near zero for the same phase. A shall
not vary much with the phase of the pulse, while B depends strongly on the
phase. A will be used to estimate the pulse height, the ratio B/A allows to
estimate the phase of the pulse.

The sequence of A-s obtained will be tested for a maximum in time, and
compared to a discriminator thresholds to trigger further processing.

1.2 Flight vs Altera DIRENA

The flight DIRENA for Solar Orbiter HET/EPT shall be implemented in
an RTAX2000 FPGA, which does not provide dedicated multiplier cells, like
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the Altera FPGA does for our non-flight DIRENA. The DIRENA algorithm
was modified so it can be implemented efficiently without multipliers. The
differences are:

• The analysis coefficients are integers in the range [−3 . . . 3], instead of
[-4095. . . 4095].

• All channels use the same set of coefficients.

• The analysis is applied to 15 consecutive samples. The Altera imple-
mentation can use a set of 16 samples out of 64 consecutive samples.

• The pulse shape is sampled at 1 MSPS instead of 3 MSPS, because the
flight ADC cannot run faster than that.

The pulses shall be shaped with a shaping time constant of τ = 2.2µs.

1.3 Hardwired configuration

The flight FPGAs may have the coefficients hardwired at compile time. The
advantages are:

• reduced complexity of the configuration procedure,

• no SEU crossection,

• less logic, and

• less power consumption.

1.4 Optimization criteria

1.4.1 Banana error

The estimated pulse height A depends on the ADC clock phase at the time of
the pulse arrival. The ratio of A to the actual pulse height plotted versus the
phase usually looks like a banana with a maximum somewhere in the center
and two ends pointing down by the same amount, as illustrated in Fig. 2.

Since the phase can be computed from the ratio B/A, the banana error
can be corrected. This is typically done offline in a PC for precision analysis
of PHA data, but cannot efficiently be done inside the FPGA for flight.

The coefficients ai shall be chosen such that the banana error is within
acceptable limits. The banana parameter b is computed from the maximum
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Figure 2: Banana of a non-flight IRENA for 207Bi conversion electron lines.
The shaping time is τ = 1µs, sampled at 3 MSPS.

A for any phase Amax, and the largest Amin for which all A > Amin in a range
around the maximum for a phase range of at least one ADC clock period

b =
Amax − Amin

Amax

. (5)

1.4.2 Noise

The estimated pulse height A shall be computed such that the electronic noise
contribution is minimized. Assuming independent noise of each sample, the
noise parameter n is computed as

n =

√∑
a2i

Amax

. (6)

1.4.3 Pileup

For high particle rates it is important that A returns to zero fast when the
pulse ages out of the nominal phase in the ring buffer, so that the pulse
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height estimate for a new pulse is not offset by the tail of the previous pulse.
The parameter p used here to estimate this property is the fraction of A

for a pulse analyzed 15µs later than when it hit the Amin range

p =
A(15µs)

Amax

. (7)

p is normally negative, because the pulse samples will hit the negative base-
line coefficients a few clocks after the maximum, and then return to zero.
When the shaper output is bipolar, or the coefficients are improperly chosen,
the A will overshoot the zero line eventually. This overshoot shall be smaller
than any reasonable trigger threshold even for maximum size pulses.

A pole-zero compensation in the shaper may be required as well to avoid
the overshoot.

INPUT OUTPUT

C2

Rf

Cf

R2

Cr

Rr
C0

R1 C1

R0

Figure 3: Schematic diagram of the frontend. For the initial analysis the
pole-zero compensation circuit C0 −R0 was not present.

2 Shaper pulse shape

The shaper output pulse shape will be computed analytically from the inverse
Laplace transform of the response functions of the preamplifier, the shaper,
and the ADC input filter.

2.1 Preamplifier

The preamplifier deposits the input charge pulse on its feedback capacitor,
which is discharged by the feedback resistor with the time constant τr =
100µs. The pulse response is

hr(t) =
1

Cr

Θ(t) exp(−t/τr). (8)
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The transfer function is the Laplace transform of the pulse response:

Hr(s) = L{h(t)} =
1

Cr

τr
1 + sτr

. (9)

2.2 Shaper

The shaper is a current feedback operational amplifier, operating as an in-
verting amplifier with gain

V =
Z2

Z1

(10)

Z1 is the complex impedance of the input branch, a resistor R1 and a capac-
itor C1 in series, with time constant τ = R1C1 = 2.2µs

Z1 = R1 +
1

jωC1

= R1
1 + jωτ

jωτ
. (11)

Z2 is the impedance of the feedback branch, a resistor R2 and a capacitor C2

in parallel, with the same time constant τ = R2C2 = 2.2µs

Z2 =
R2

jωC2

R2 + 1
jωC2

=
R2

1 + jωτ
(12)

The transfer function of the shaper is V , with jω = s

Hs(s) =
Z2

Z1

=
asτ

(1 + sτ)2
(13)

with the linear amplification factor a = R2/R1 = C1/C2.

2.3 ADC input filter

Between shaper output and ADC input there is a simple R-C filter. The
resistor Rf is located close to the opamp, to limit its capacitive load to a
minimum. The capacitor Cf is located close to the ADC input, to capture
any charge that the ADC input will emit with the start of each conversion
when the track and hold captures the input voltage. The filter has a time
constant τf = RfCf = 0.33µs. The transfer function is that of a voltage
divider built from Z3 = Rf and Z4 = 1/(jωCf ):

Hf (s) =
Z4

Z3 + Z4

=

1
jωCf

Rf + 1
jωCf

=
1

1 + sτf
(14)
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2.4 Frontend transfer function

The transfer function of the frontend electronics is the product of its parts

H(s) = Hr(s)Hs(s)Hf (s) (15)

=
1

Cr

τr
1 + sτr

asτ

(1 + sτ)2
1

1 + sτf
(16)

2.5 Inverse Laplace transform

The silicon detectors are very fast compared to the electronics, the charge
pulses are considered δ-functions in time:

q(t) = qδ(t) (17)

The output pulse shape is thus obtained directly by the inverse Laplace
transform of the transfer function.

u(t) = L−1 {H(s)} . (18)

The computer algebra program maxima was used to compute the inverse
Laplace transform.

maxima

display2d:false$

H: s/(1+s*T)**2/(1+s*TR)/(1+s*TP);

h: ilt(H,s,t);

-TR*%e^-(t/TR)/(TR^3+(-TP-2*T)*TR^2+(2*T*TP+T^2)*TR-T^2*TP)

-%e^-(t/T)*(T*TP*TR-T^3)/(T*((TP^2-2*T*TP+T^2)*TR^2

+(-2*T*TP^2+4*T^2*TP-2*T^3)*TR+T^2*TP^2

-2*T^3*TP+T^4))

+TP*%e^-(t/TP)/((TP^2-2*T*TP+T^2)*TR-TP^3+2*T*TP^2-T^2*TP)

-t*%e^-(t/T)/(T*((TP-T)*TR-T*TP+T^2))

This output could be copied and pasted into gnuplot and python scripts after
minor syntax fixes. Some transformations yield:

h1(t) = − exp(−t/τr)
τr

(τr − τf )(τr − τ)2
(19)

h2(t) = − exp(−t/τ)
τfτr − τ 2

(τf − τ)2(τr − τ)2
(20)

h3(t) = exp(−t/τf )
τf

(τf − τ)2(τr − τf )
(21)

h4(t) = −t exp(−t/τ)
1

ττfτr − τ 2(τr + τf ) + τ 3
(22)

h(t) =
aττr
Cr

(h1(t) + h2(t) + h3(t) + h4(t)) (23)
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2.6 Pole-zero compensation

By adding a resistor R0 parallel to C1, the preamplifier time constant can be
compensated in the shaper. For now we consider the capacitance of C0 to be
infinite, i.e., shorted. The impedance Z1 becomes:

Z1 = R1 +
R0

1
jωC1

R0 + 1
jωC1

= R1
τr
τ

1 + jωτ

1 + jωτr
, (24)

with τr = C1R0 and τ = C1R0R1/(R0 + R1). The transfer function of the
shaper with R0 is

Hs(s) =
Z2

Z1

=
aτ

τr

1 + sτr
(1 + sτ)2

. (25)

In the overall transfer function, the pole of the preamplifier cancels with the
new zero in the shaper

H(s) =
1

Cr

aτ

(1 + sτ)2
1

1 + sτf
. (26)

The pulse response is now:

h(t) =
a

Cr

((
e
− t
τf − e−

t
τ

)
ττf

(τ − τf )2
+ te−

t
τ

1

τ − τf

)
(27)

2.7 Pole-zero compensation, AC-coupled

The resistor R0 introduces a DC-gain to the circuit. The preamplifier outputs
have a DC level at about VGS = −250 mV, that is the gate-source voltage of
the jFET at the chosen bias current. R0 gives a DC-gain of one to a high-
gain shaper. The resulting DC offset will cut into the dynamic range of the
channel. For DC-coupled detectors, the detector bias current will shift the
DC level further. That could be considered a nice housekeeping diagnostic.
But we do not plan to use DC-coupled detectors, because of the associated
loss of dynamic range at the preamplifier output.

To avoid the DC-gain, the capacitor C0 shall AC-couple the pole-zero
compensation. The capacitance of C0 shall be as large as possible, for flight,
in size 0805, the largest available capacitance is C0 = 220 nF, compared to a
high-gain C1 = 10 nF this is not negligible.

So let us look at the transfer function with C0 included. The input
impedance of the shaper becomes:

Z1 = R1 +

1
jωC1

(
R0 + 1

jωC0

)
1

jωC1
+R0 + 1

jωC0

(28)
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= R1
1 + s(τ1 + τ00) + s2τ1τr

(1 + sτr)sτ1
(29)

=
R1

sτ1

(1 + sτ)(1 + sτ0)

1 + sτr
(30)

with

τ1 = (C0 + C1)R1 (31)

τ00 = C0R0 (32)

τr = C1R0C0/(C0 + C1) (33)

ττ0 = τ1τr = C0C1R0R1 (34)

τ + τ0 = τ1 + τ00 = R1C0 +R1C1 +R0C0. (35)

This is a system of equations that needs to be solved for R0, R1, and τ0
to implement the desired pole (1 + sτ) and zero (1 + sτ + r) in the shaper
transfer function

R0 =
τr
C1

(
1 +

C1

C0

)−1

, (36)

R1 =
τ

C1

(
1 +

τ

τr
+O

{
τ

τ0

})
, (37)

τ0 = C0R0

(
1 +

R1

R0

+O
{
τ 2

τrτ0

})
. (38)

The zero will cancel the pole of the preamplifier, which is replaced by the
a new pole (1 + sτ0) with a much larger time constant. The structure of the
transfer function is the same as the case without pole-zero compensation, so
we can use the function from section 2.5, just with a larger value for tr.

With C1 = 10 nF and C0 = 220 nF the new parasitic pole with have the
time constant τr = 2.2 ms.

2.8 IRENA 1µs pulse shape

Fig. 4 demonstrates how well the inverse Laplace transform fits to the data
sampled with the non-flight IRENA. The ADC samples were normalized to
the reconstructed phase and banana-corrected amplitude. The time con-
stants were fitted to the data.

3 Banana optimized coefficients

A python script was developed to search for coefficients ai that minimize the
banana error.
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Figure 4: Non-flight pulse shape, sampled and modeled.
τ = 1.02µs, τr = 110.8µs, τf = 0.363µs.

3.1 Constraints on ai

The coefficients for the latest sample a0, b0 must be zero, because the FPGA
implementation cannot at this point reliably use that ADC sample. It is
doubtful if that can be fixed. So there are only 15 samples available, a1 . . . a15.
(The python script uses a reversed sample index.)

The value space of eight coefficients was searched. The remaining seven
coefficients were used to normalize the sum to zero. The ranges of values
considered were:

• a0 = 0.

• a1 and a2 were allowed to take values [−1, 0, 1]. These sample the tail
of the pulse.

• a3 . . . a5 were searched in the range [0 . . . 3], to sample the peak of the
pulse and obtain good sensitivity for the amplitude.

• a6 was forced to be non-zero, [1 . . . 3], to anchor the pulse reconstruction
phase to a fixed ADC clock period.
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• a7 is either 0 or 1. This coefficient samples the steepest part of the
pulse. Larger values would cause larger banana errors. After some
experiments, the values 2 and 3 were omitted for efficiency from further
searches.

• a8 = 1 is fixed. Experiments have shown that all good solutions need
this value.

The next two or three coefficients were were given the value −3, and one
further negative value, until the overall sum was zero. Those coefficients
sample the baseline of the shaper output before the pulse.

The coefficients bi were derived manually by trial and error until a suitably
linear dependency on the phase in the right range resulted. The values are
listed in the caption of Fig. 1.

3.2 Results

For each tested set of coefficients the banana error b was calculated. All
solutions with b < 1 % were saved, in a list, sorted, and manually reviewed.

For τ = 2.2µs, τr = 1000µs, and τf = 0.36µs, the best 50 and some
notable results are:

0.00281 0.700 6.960 -0.084 1.06 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 3, 0, 1, 1, 0]

0.00287 0.670 6.818 -0.087 1.04 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 2, 1, 1, 1, 0]

0.00305 0.660 6.703 -0.089 1.12 [0, 0, 0, -2, -3, -3, -3, 1, 1, 2, 0, 3, 3, 1, 0, 0]

0.00317 0.650 6.626 -0.075 1.07 [0, 0, 0, -1, -3, -3, -3, 1, 1, 1, 2, 3, 2, 1, -1, 0]

0.00330 0.740 6.407 -0.059 1.13 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 1, 3, 0, -1, 0]

0.00336 0.680 6.187 -0.063 1.12 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 3, 1, 0, 0, 0]

0.00336 0.670 6.648 -0.074 1.11 [0, 0, 0, -1, -3, -3, -3, 1, 1, 1, 2, 3, 3, -1, 0, 0]

0.00348 0.660 7.099 -0.083 1.04 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 3, 1, 0, 1, 0]

0.00348 0.710 6.682 -0.057 1.12 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 2, 3, -1, -1, 0]

0.00348 0.630 6.679 -0.090 1.06 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 1, 2, 1, 1, 0]

0.00354 0.640 6.959 -0.086 1.04 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 2, 2, 0, 1, 0]

0.00360 0.670 6.110 -0.052 1.11 [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

0.00360 0.730 6.599 -0.073 1.09 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 0, 2, 0, 1, 0]

0.00366 0.630 6.767 -0.073 1.09 [0, 0, 0, -1, -3, -3, -3, 1, 1, 1, 2, 3, 3, 0, -1, 0]

0.00385 0.610 6.487 -0.077 1.09 [0, 0, 0, -1, -3, -3, -3, 1, 1, 1, 2, 2, 3, 1, -1, 0]

0.00385 0.660 6.327 -0.062 1.14 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 3, 2, -1, 0, 0]

0.00385 0.710 6.874 -0.070 1.07 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 1, 2, -1, 1, 0]

0.00391 0.750 6.551 -0.057 1.08 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 2, 2, 0, -1, 0]

0.00397 0.700 6.734 -0.072 1.13 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 0, 3, -1, 1, 0]

0.00397 0.730 6.825 -0.055 1.10 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 3, 2, -1, -1, 0]

0.00403 0.610 6.820 -0.089 1.08 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 1, 3, 0, 1, 0]

0.00403 0.650 6.047 -0.065 1.12 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 2, 2, 0, 0, 0]

0.00403 0.740 7.261 -0.093 1.05 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 1, 3, 1, 1, 0]

0.00409 0.780 6.468 -0.073 1.09 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 0, 1, 1, 1, 0]

0.00415 0.650 6.251 -0.051 1.11 [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 3, 1, -1, -1, 0]

0.00415 0.750 6.742 -0.071 1.05 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 1, 1, 0, 1, 0]

0.00415 0.710 6.995 -0.069 1.03 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 2, 0, 1, 0, 0]

0.00421 0.680 6.716 -0.073 1.07 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 0, 2, 1, 0, 0]

0.00421 0.720 7.536 -0.090 1.03 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 2, 3, 0, 1, 0]

0.00421 0.590 6.541 -0.094 1.12 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 0, 3, 1, 1, 0]

0.00427 0.710 6.055 -0.064 1.14 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 3, 0, 1, 0, 0]

0.00427 0.640 5.768 -0.069 1.15 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 1, 2, 1, 0, 0]

0.00427 0.660 5.833 -0.055 1.11 [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 2, 0, 1, -1, 0]

0.00427 0.690 6.855 -0.071 1.03 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 1, 1, 1, 0, 0]

0.00427 0.720 7.017 -0.068 1.05 [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 2, 1, -1, 1, 0]

0.00427 0.670 5.911 -0.067 1.12 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 2, 1, 1, 0, 0]

0.00433 0.760 7.214 -0.079 1.06 [0, 0, 0, -2, -3, -3, -3, 1, 1, 2, 1, 3, 3, 1, -1, 0]

0.00433 0.640 6.309 -0.063 1.12 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 3, 1, 1, -1, 0]

0.00433 0.670 7.651 -0.090 1.01 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 2, 3, 1, 0, 0]

0.00433 0.640 5.971 -0.054 1.09 [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 2, 1, 0, -1, 0]

0.00439 0.770 6.695 -0.056 1.08 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 3, 1, 0, -1, 0]
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0.00439 0.690 7.868 -0.100 1.09 [0, 0, 0, -4, -3, -3, -3, 1, 1, 3, 0, 3, 3, 1, 1, 0]

0.00446 0.680 7.791 -0.088 0.99 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 3, 2, 1, 0, 0]

0.00446 0.700 7.812 -0.087 1.04 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 3, 3, -1, 1, 0]

0.00452 0.630 5.691 -0.058 1.11 [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 1, 1, 1, -1, 0]

0.00452 0.620 7.239 -0.083 1.05 [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 3, 2, -1, 1, 0]

0.00458 0.770 7.159 -0.065 1.08 [0, 0, 0, -1, -3, -3, -3, 1, 1, 1, 3, 3, 3, -1, -1, 0]

0.00458 0.630 6.188 -0.064 1.17 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 1, 2, 3, -1, 0, 0]

0.00458 0.750 7.405 -0.091 1.01 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 2, 2, 1, 1, 0]

0.00458 0.740 6.134 -0.062 1.18 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 0, 3, 1, -1, 0]

0.00458 0.770 6.278 -0.060 1.10 [0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 1, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.080 0.96 [0, 0, 0, -4, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00995 0.730 5.434 -0.046 1.16 [0, 0, 0, 0, -1, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

The columns are: the banana error b, the phase where Amin is first
reached, Amax, The pileup parameter p, and the noise parameter n, followed
by the list of coefficients [a15 . . . a0].
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Figure 5: Double peaked pulse height vs phase. Same solution as in Fig. 1,
zoomed into the A-graph (right y-axis). The graph is also shown shifted by
±1 ADC clock period on the x-axis. The crossings mark the range of phase
used for pulse height analysis.
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Figure 6: Banana of the flight IRENA test with the HET demonstrator, for
a 207Bi conversion electron line. The shaping time is τ = 2.2µs, sampled
at 1 MSPS, no pole-zero compensation. Also shown is the analytic banana
model.

3.2.1 How to get a good Banana

To get a low banana error b, the pulse height estimate A must assume two
maxima that are less than one ADC clock period apart in phase. Negative
coefficients in the tail tend to help, as well are non-monotonic patterns of
coefficient on the peak. The negative baseline coefficients have no influence
on the banana error at all.

3.2.2 How to get low noise

For low noise, the coefficients along on the pulse peak must be maximized, to
yield a high Amax. The result at b = 0.970 % gives the best noise parameter
n = 0.96 (for b < 1 %). Note the large Amax = 9.159.
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Figure 7: Solution used for the HET test.
τ = 2.2µs, τr = 100µs, τf = 0.36µs,
ai=[0, 0, 0, 0,−3,−3,−3, 1, 0, 3, 2, 1, 2, 0, 0, 0],
bi=[0, 0, 0, 0, 0, 0, 0,−2,−3,−1, 0, 2, 2, 1, 1, 0],
b = 0.317 %, Amax = 6.009, n = 1.13, p = −6.2 %.

3.2.3 How to optimize for pileup

Fast recovery for low pileup requires narrow coefficient patterns. This con-
flicts with the desire for low noise and low banana error.

Another way to get fast recovery is to add positive coefficients on the base-
line preceding the negatively weighed baseline samples. This pileup tuning
must be carefully applied to avoid overshoots. Overshoots may cause extra
triggers after large pulses, which must be avoided. The pileup tuning adds
to the coefficients without yielding larger Amax, so the pileup improvements
come at the cost of additional electronic noise.

For example, tuning the result with the best native pileup from the list,
with b = 0.995 %, yields:

0.00995 0.730 5.434 -0.046 1.16 [0, 0, 0, 0, -1, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

0.00995 0.730 5.434 -0.034 1.33 [0, 0, 0, 2, -3, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

0.00995 0.730 5.434 -0.026 1.30 [0, 0, 1, 1, -3, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]
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0.00995 0.730 5.434 -0.018 1.33 [0, 0, 2, 0, -3, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

0.00995 0.730 5.434 -0.010 1.40 [0, 0, 3, -1, -3, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

0.00995 0.730 5.434 0.009 1.45 [0, 1, 3, -2, -3, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

The last result causes an overshoot of 1 %Amax, and is not suitable.
Pileup tuning of the result with best noise, at b = 0.97 %, yields:

0.00970 0.830 9.159 -0.084 0.93 [0, 0, -1, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.078 0.95 [0, 1, -2, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.072 1.00 [0, 2, -3, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.064 0.99 [1, 1, -3, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.055 1.00 [2, 0, -3, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.047 1.04 [3, -1, -3, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

This would be candidate when the emphasis is to be both fast and low
noise, but with a rather large banana error. This solution employs the full
range of coefficients, and could probably even use more, if they were available.

The solution presented in Fig. 1 is derived from a rather low-b and low-p
result:

0.00360 0.670 6.110 -0.052 1.11 [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

0.00360 0.670 6.110 -0.047 1.18 [0, 0, 0, 1, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

0.00360 0.670 6.110 -0.040 1.18 [0, 0, 1, 0, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

0.00360 0.670 6.110 -0.033 1.22 [0, 0, 2, -1, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

0.00360 0.670 6.110 -0.016 1.27 [0, 1, 2, -2, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

0.00360 0.670 6.110 -0.008 1.37 [0, 1, 3, -3, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

The last line produces an overshoot of 0.01 %. An overshot that low may
be acceptable, but the fact that it is present suggests to take a step back.

4 HET demonstrator test

The ADC test board was connected to the HET demonstrator sensor head,
configured with banana-optimized coefficients, and tested with a 207Bi source.
The thick window of the sensor head degrades the intrinsic resolution of the
obtained electron lines, but the shape of the banana can be observed in Fig. 6.

The coefficients and model parameters are given in the caption of Fig. 7.
The measured banana error appears to be larger than modeled. Reasons

may be that the real preamplifier time constant is τr = 330µs, because
the feedback resistor was changed from Cr = 1 pF to Cr = 3.3 pF without
adapting the feedback resistor.

5 Hamamatsu diode test, with pole-zero com-

pensation

The ADC test board was connected to a preamplifier test board with five
preamplifiers, two of those are populated with flight UHF transistors. Pole-
zero corrections were added to three shapers on the ADC test board, all with
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Figure 8: Samples and pulse shape fit. The color is the sample density. A
scatterplot with this many dots would kill the printer.

the same time constants for high gain

C2 = 200 pF, R2 = 10 kΩ, (39)

C1 = 10 nF, (40)

R1 = 220 Ω on the preamplifier board, (41)

C0 = 220 nF, R0 = 10 kΩ, (42)

τ = 2.2µs, τr = 105µs, τ0 = 2300µs. (43)

Two preamplifier were modified for larger dynamic range, with Cr = 10 pF,
Rr = 10 MΩ, and Cr = 3.3 pF, Rr = 33 MΩ. The third preamplifier con-
nected to a pole-zero enabled shaper was kept with the standard high-gain
configuration Cr = 1 pF, Rr = 100 MΩ.

Hamamatsu photodiodes size 1 cm2 were connected to all five the pream-
plifier inputs and biased to Ubias = 67 V. The 207Bi conversion electron source
was mounted in front of the photodiodes, at a distance of about 1 cm.
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Figure 9: Banana plot of the 976 keV line, with the b = 0.970 % coefficients.
Also shown the polynomial banana fit to the pulse shape analysis model.

5.1 Preamplifier stability

The Cr = 10 pF preamplifier is populated with flight UHF transistors. This
was the first test we did with this preamplifier design with such a large
feedback capacitor. No instabilities were observed. With the feedback loop
closed right after the common base stage instabilities were not expected, but
still, it good to see it working. A proper analysis of the phase margin is still
pending.

5.2 Low noise analysis, moderate banana coefficients

An attempt was made to run with the tuned, high-resolution coefficients
discussed before:

0.00970 0.830 9.159 -0.084 0.93 [0, 0, -1, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

0.00970 0.830 9.159 -0.047 1.04 [3, -1, -3, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

That resulted in multiple triggers per pulse, observable by extra peaks
in the spectra at lower energies. The untuned coefficients from the first line
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Figure 10: Resolution fits to the 482 keV electron lines. Data and fits, for the
uncorrected and banana-corrected spectra. (The σ symbols did not print.)

were used instead. These coefficients yield an exceptional high amplitude
value, with correspondingly good noise parameter, but the banana error is
expected to be up to ±0.5 %.

5.2.1 Pulse shape fit

A samples run was taken with a high trigger threshold, so that only 976 keV
electron hits were collected. Preliminary banana and phase fits were per-
formed, and the the ADC samples were normalized to unit amplitude and
proper phase. The pulse shape model from section 2.5 was fitted to the data.
The results were

τ = 2.23077± 0.00017µs, (44)

τr = 2.4·108 ± 1.5·1011 µs, (45)

τf = 0.3117± 0.0004µs. (46)

(47)

The expected pole at τr = 2300µs is missing.
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Figure 11: Resolution fits to the 976 keV electron lines. Data and fits, for
the uncorrected and banana-corrected spectra.

A polynomial banana and phase fit was then performed on the model
pulse shape, yielding a correction term for f = B/A

C(f) = 1− 0.021f − 0.481f 2 + 1.943f 3 + 9.219f 4 − 8.390f 5 + 277f 6. (48)

The corrected amplitude is then

Ac =
A

C
(
B
A

) . (49)

The phase fit results were

ϕ = 1.395− 2.964f + 0.387f 2 − 17.2f 3 + 5.296f 4 + 171.9f 5. (50)

The constant term is a result of the time normalization of the scripts. It can
be omitted.

The ADC samples were normalized again with these corrections, and a
new pulse shape model fit performed, yielding about the same results:

τ = 2.22938± 0.00017µs, (51)
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Figure 12: Banana fit for b = 0.385 % coefficients. Thin red is the amplitude
vs phase A(ϕ) (left vs top axis), for three ADC clock periods. Thick red is the
same data vs the phase parameter A(B

A
) (bottom axis) and the polynomial

of degree 7 fitted in the range [−0.116 ≤ B
A
≤ 0.256] in blue. The black bars

frame the range of the banana that need to be covered. In green is phase vs
phase parameter ϕ(B

A
) (right vs bottom axis), with a polynomial fit in light

blue. The coefficients are
τ = 2.229µs, τr = 240s, τf = 0.3177µs,
ai=[0, 0, 1, 2, 3, 2, 2, 1, 1,−3,−3,−3,−3, 0, 0, 0],
bi=[0, 1, 1, 2, 2, 0,−1,−3,−2, 0, 0, 0, 0, 0, 0, 0],
b = 0.385 %, Amax = 7.873, n = 0.98, p = −8.9 %.

τr = 2.4·108 ± 1.4·1011 µs, (52)

τf = 0.3177± 0.0004µs. (53)

(54)

The normalized sample coordinates are

y = (si − s15)C(
B

A
)/A (55)
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Figure 13: Banana plot for b = 0.385 % coefficients. With the spectra plotted
x vs y-axis, green: uncorrected, pink: banana-corrected. In blue, the banana
correction function, derived from the pulse shape model.

x = 15− i+ ϕ(
B

A
) (56)

Fig. 8 shows the sample density and the pulse model fit.

5.2.2 Banana plot

Fig. 9 show how well the model banana correction works. The green line was
derived from the pulse shape model only with some approximate amplitude
factor applied.

5.2.3 Energy resolution

The spectra were analyzed both uncorrected and with banana-correction ap-
plied. Figs. 10 and 11 show fits to the electron line spectra in at two energies,
482 keV and 976 keV. The resolution of the corrected peaks is 3.3 keV in both
cases. The banana error adds 0.19 % and 0.24 % to the resolution in the un-
corrected spectra. The banana connection moves the peaks by +0.3 % up.
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Figure 14: 207Bi-spectra for all gains. The Cr = 3.3 pF and Cr = 10 pF
spectra were scaled to match. The spectra were not banana-corrected.

The calibration of the connected spectra is 1.204 mV/keV and 1.198 mV/keV.
The difference could be energy loss differences in the air and detector win-
dows of about 3 keV

5.3 Low noise, good banana, coefficients

Next, I used the pulse shape model as fitted to the measured pulse samples
to repeat the search for optimal coefficients. The best banana with noise
parameter below 1 is

0.00385 0.690 7.873 -0.089 0.98 [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 3, 2, 1, 0, 0]

The model analysis was performed and a banana fitted to the model.
This shape required an extra order in the polynomial (Fig. 12)

C(f) = 1− 0.003928f − 0.3721f 2 + 0.2726f 3 (57)

+22.70f 4 + 36.51f 5 − 964.3f 6 + 2091f 7.

Fig. 13 shows the measured 976 keV banana.
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the uncorrected and banana-corrected spectra.

5.3.1 Energy resolution

The spectra for all three channels are shown in Fig. 14. The trigger thresholds
were agressivly lowered, to 1.8 mV, 3.5 mV, and 10 mV.

The high events rates just above threshold are not caused by noise but
by the 10.6 keV X-ray line of the Bismuth source.

Fig. 15 shows the resolution fits. The banana correction did not improve
the resolution. Overall, the resolution is worse than with the low-noise coef-
ficients, by about 5 %

σb0.385
σb0.970

=
3.49 keV

3.33 keV
= 1.048. (58)

This agrees nicely with the rations of the noise parameters of the coefficients

nb0.385

nb0.970

=
0.98

0.93
= 1.05. (59)
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Figure 16: Cosmic muon spectra.

5.3.2 Trigger threshold

The spectra shown in Fig. 16 were accumulated over five days with cosmic
muons. The trigger thresholds were adjusted to just acceptable noise trig-
ger rate at 14 keV, 16 keV, and 28 keV respectively for the three different
preamplifier gains.

6 Conclusion

The flight DIRENA implementation can deliver pulse heights with less than
1 % banana error. The techniques and scripts developed for this study supply
the tools to derive coefficients suitable for flight.

The recovery speed can be traded for noise. In light of these tradeoffs
it may be advisable to keep the coefficients configurable even with the final
flight FPGA. On the other hand, the achieved results are better than required
for all parameters, and the tradeoffs yield only marginal improvements for
one or the other parameter.
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7 Python script

Started as a program, the scripts computes and outputs the curves shown in
the figures. Importing as a module allows to run the function exsearch() to
find all solutions with b < 1 %. The parameters and coefficients were edited
in the source.

#! /usr/bin/python

# -*- encoding: utf-8 -*-

from math import exp, sqrt

import numpy, sys

# from 2011-06-01-Bi207-14-fit.gpt

T= 1.02271409701796 # µs
TR= 110.784997349802 # µs
TP= 0.363295701847157 # µs
t0= 8.05429549655105 # µs
A= 2.38912672508397

# slow shapers:

T = 2.2 # µs
TR= 330. # µs
t0 = 0

TR=1000 # with pole-zero correction

def shaper(t):

if t<=0:

return 0.0

s1 = -exp(-t/TR) * TR / ( (TR-TP)*(TR-T)**2 )

s2 = -exp(-t/T) * (TP*TR-T**2) / ( (TP-T)**2 * (TR-T)**2 )

s3 = exp(-t/TP) * TP / ( (TP-T)**2 * (TR-TP) )

s4 = -t*exp(-t/T) / ( T*TP*TR - T**2*(TR+TP) + T**3 )

#s1 = -TR*exp(-(t/TR))/(TR**3+(-TP-2*T)*TR**2+(2*T*TP+T**2)*TR-T**2*TP)

#s2 = -exp(-(t/T))*(T*TP*TR-T**3)/(T*((TP**2-2*T*TP+T**2)*TR**2

# +(-2*T*TP**2+4*T**2*TP-2*T**3)*TR+T**2*TP**2

# -2*T**3*TP+T**4))

#s3 = TP*exp(-(t/TP))/((TP**2-2*T*TP+T**2)*TR-TP**3+2*T*TP**2-T**2*TP)

#s4 = -t*exp(-(t/T))/(T*((TP-T)*TR-T*TP+T**2))

s = s1+s2+s3+s4

return A*T*TR*s

# 0.0055

fa=[ 0, 0, 0, -3, -3, -3, -1, 1, 1, 2, 3, 2, 2, 1, 0, 0, ]

fb=[ 0, 0, 0, 0, 0, 0, 0, -2, -3, -2, 0, 3, 2, 1, 1, 0, ]

27



# March runs

fa=[-1, -1, -1, -1, -2, -2, -2, 0, 1, 3, 3, 2, 1, 0, 0, 0, ]

fb=[0, 0, 0, 0, 0, 0, 0, -3, -2, 0, 1, 2, 1, 1, 0, 0, ]

# 0.0035

fa = [ 0, 0, 0, -1, -2, -3, -2, 1, 0, 3, 2, 2, 1, 0, 0, 0, ]

fb = [ 0, 0, 0, 0, 0, 0, 0, -2, -3, -1, 0, 2, 2, 1, 1, 0, ]

# 0.0030

fa = [-0, -0, -0, -0, -3, -3, -3, 1, 0, 3, 2, 1, 2, 0, 0, 0, ]

# TR=330. 0.00330

fa = [0, 0, 0, -1, -3, -3, -3, 1, 0, 3, 3, 0, 0, 3, 0, 0]

# 0.00378

fa = [0, 0, 0, 0, -2, -3, -3, 1, 0, 2, 3, 3, 0, -1, 0, 0]

# 0.00305

fa = [ 0, 0, 0, 0, -3, -3, -3, 1, 0, 3, 2, 1, 3, 0, -1, 0, ]

# TR=10000

# 0.00311

fa = [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 3, 1, 0, 1, 0]

# 0.00287

fa = [0, 0, 0, -2, -3, -3, -3, 1, 1, 1, 3, 2, 1, 1, 1, 0]

# 0.00385 0.660 6.259 -0.051

fa = [0, 1, 2, -2, -3, -3, -3, 1, 0, 2, 3, 3, 1, -1, -1, 0]

# TR = 1000

# 0.00446 0.680 7.791 -0.088 0.99

fa = [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 3, 2, 1, 0, 0]

# 0.00995 0.730 5.434 -0.046 1.16

fa = [0, 2, 2, -2, -3, -3, -3, 1, 0, 2, 2, 3, 1, -1, -1, 0]

# 0.00970 0.830 9.159 -0.080 0.96

fa = [3, -1, -3, -3, -3, -3, -3, 1, 1, 3, 3, 3, 2, 1, -1, 0]

# 0.00360 0.670 6.110 -0.052 1.11

fa = [0, 1, 3, -3, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

fa = [0, 1, 2, -2, -3, -3, -3, 1, 0, 2, 3, 3, 0, 0, -1, 0]

# 2012-03-30-hetdm128-Bi207-12

fa = [-0, -0, -0, -0, -3, -3, -3, 1, 0, 3, 2, 1, 2, 0, 0, 0, ]

fb = [ 0, 0, 0, 0, 0, 0, 0, -2, -3, -1, 0, 2, 2, 1, 1, 0, ]

# 2012-04-03-adc128pz-Bi207-17.dat
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fa=[0, -1, 1, 2, 3, 3, 3, 1, 1, -3, -3, -3, -3, -1, 0, 0]

fb=[0, 1, 1, 2, 2, 0, -1, -3, -2, 0, 0, 0, 0, 0, 0, 0]

fa.reverse()

fb.reverse()

T = 2.23077 # +/- 0.0001689 (0.00757%)

TR = 2.40239e+08 # +/- 1.479e+11 (6.156e+04%)

TP = 0.311688 # +/- 0.0003724 (0.1195%)

#G = 2.58376 # +/- 0.0001471 (0.005692%)

#X = 5.996 # +/- 0.0002728 (0.00455%)

T = 2.22938 # +/- 0.0001659 (0.007442%)

TR = 2.40239e+08 # +/- 1.444e+11 (6.011e+04%)

TP = 0.317707 # +/- 0.0003644 (0.1147%)

# 2012-04-04-adc128pz-Bi207-19

# 0.00391 -0.380 7.290 -0.143 1.06

fa = [0, 0, 0, -3, -3, -3, -3, 1, 1, 1, 1, 3, 3, 1, 1, 0]

# 2012-04-04-adc128pz-Bi207-20

# 0.00385 0.690 7.873 -0.089 0.98

fa = [0, 0, 0, -3, -3, -3, -3, 1, 1, 2, 2, 3, 2, 1, 0, 0]

if sum(fa) or sum(fb):

raise ValueError("fa must be normalised to zero")

def AB(fab, phase):

s = numpy.array([shaper(t-8+phase) for t in range(16)])

return [sum(s*a) for a in fab]

def width(a,m):

w1=0

w2=len(a)

for i,aa in enumerate(a):

if aa>=m:

w2 = i;

if not w1:

w1 = i

elif w1:

break

return w2-w1;

def banana(fa):

a = numpy.array([AB((fa,), p/100.-1)[0] for p in range(401)])

m = a.max()

m1 = 0

m2 = m

while m2-m1 > 0.0001*m:

mm = (m1+m2)/2.0;

if width(a, mm) > 100:

m1 = mm
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else:

m2 = mm

return 1-m1/m

def poffset(fa):

b = banana(fa)

a = numpy.array([AB((fa,), p/100.-1)[0] for p in range(401)])

m = a.max()*(1-b)

for p,aa in enumerate(a):

if aa>=m:

pp = p/100.-1

return pp, a.max(), AB((fa,), 15+pp)[0]/a.max()

def ismin(fa, i):

return False

return fa[i]<fa[i-1] and fa[i]<fa[i+1]

def findfa(fa):

fam = None

bmin = banana(fa)

fan = [a for a in fa]

for i in range(7,15):

fan[i] = fa[i]+1

if fan[i]<=3 and not ismin(fan,i-1) and (i>=14 or not ismin(fan,i+1)):

b = banana(fan)

if b<bmin:

bmin = b

fam = [a for a in fan]

fan[i] = fa[i]-1

if fan[i]>=-3 and not ismin(fan,i):

fan[i] = fa[i]-1

b = banana(fan)

if b<bmin:

bmin = b

fam = [a for a in fan]

fan[i] = fa[i]

return bmin, fam

def noiseterm(fa):

return sqrt(sum([a*a for a in fa]))

fas = []

def exsearch():

fam = None

fa = [0]*16

fa[6]=-3

fa[5]=-3

fa[4]=-3
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bmin = 1

r = [0,1,2,3]

for fa[14] in [0,-1,1]:

for fa[13] in [-1,0,1]:

for fa[12] in r:

for fa[11] in r:

for fa[10] in r:

for fa[9] in [1,2,3]:

for fa[8] in [0,1]:

for fa[7] in [1]:

fa[0:7] = [0,0,0,0,-3,-3,-3]

s = sum(fa)

if s<0:

fa[4] = -3-s

else:

fa[3] = -s

b = banana(fa)

if b<bmin:

bmin = b

fam = [a for a in fa]

if b<0.01:

p, m, t = poffset(fa)

fas.append((b, p, m, t, noiseterm(fa)/m, [a for a in fa]))

if b<0.0051:

sys.stderr.write("%.5f %.3f %.3f %.3f %.2f %s\n" % fas[-1])

return bmin, fam

fan = [a for a in fa]

while fan:

b = banana(fan)

p, m, t = poffset(fan)

n = noiseterm(fan)/m

sys.stderr.write("%.5f %.3f %.3f %.3f %.2f %s\n" % (b, p, m, t, n, fan))

b,fan = findfa(fan)

if __name__ == ’__main__’:

p = poffset(fa)[0]

ss = 0

for t in range(5501):

tt = t/100. - 10

i = int(tt+8-p)

if i<0 or i>15:

i=15

a,b = AB((fa,fb), tt)

s = shaper(tt)

print tt, s, a,b, fa[i], fb[i], (s-ss)*100

ss = s
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