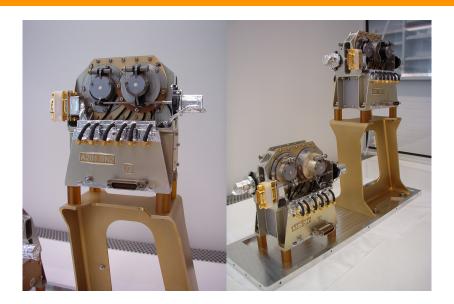
SEPT Heaters

Stephan I. Böttcher

Institut für Experimentelle und Angewandte Physik Christian Albrechts Universität zu Kiel


February 14, 2011

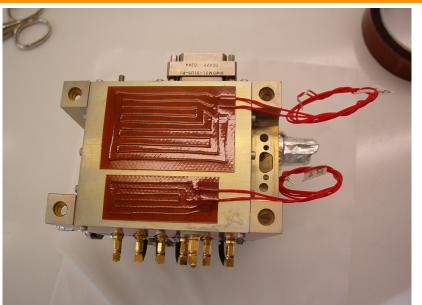
- ▶ SEPT
- Heaters
- Thermostats
- Heater operation.

SEPT Heaters

hermostats Heater Operation

SEPT

Stephan I. Böttcher IEAP, CAU Kie

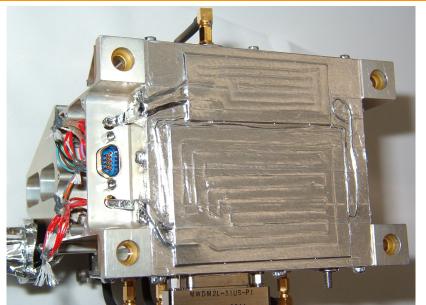


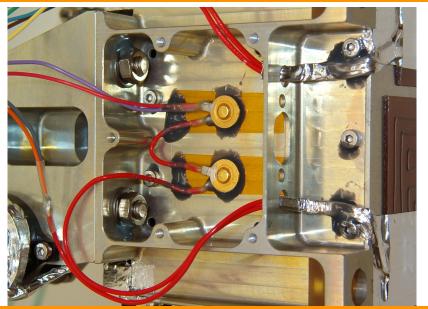
Heaters Thermostats Heater Operation

●○ ○ ○ ○ ○ ○ ○ ○ ○ ○

CAU

Ebox bottom cover



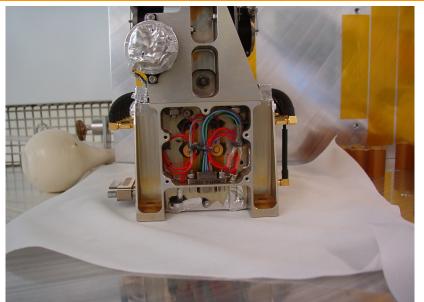

Stephan I. Böttchei

IEAP, CAU Kiel

Heaters

CAU

SEPT Heaters



SEPT Heaters February 14, 2011 Heaters Thermostats Heater Operation

CAU

EMI, well .

Stephan I. Bottcher

IEAP, CAU Kiel

SEPT

▶ Thermostats turn on below -25° C and turn off at -15° C.

Heater Operation

- ▶ Two thermostats for redundancy, to protect against failure to switch off, not against failure to turn on.
- ▶ S/C turned on survival heater power before launch, because they did not want to bother with this first thing in orbit. We got a waiver to not need to vibe with 28V on.
- ► SEP-C gets either operational power or survival heater power, and forwards that to SFPT

▶ SEPT is a dumb slave on a serial interface. SEP-Central starts an acquisition every minute and gets HK, including two Ebox temperatures, 1°C resolution.

Heater Operation

- ▶ OP-heater is pulse width modulated at 0.1 Hz. For every °C below the temperature goal, the duty cycle is raise by 10%, i.e., one second on. IOW, when the temperature is n° C below temp-goal, the heater is n seconds on, 10 - n seconds off.
- ▶ There is a S/C operated thermistor on the sensor head, to monitor our temperature that also works when we are powered off. We have never seen any data from that thermistor, probably ITAR.

SEPT Heaters

