
1 Python Scripting für Physiker - Handout W1

2 Built-In Types
2.1 Numbers
Number data types store numeric values (e.g integer,long,float,complex).
>>> var1 = 4 # ass ign integer 4 to var iab le var1
>>> var2 = 4. # ass ign f l o a t 4.0 to var iab le var2
>>> var1 , var2 = 3 ,5 # ass ign multiple var iab le s at once

They work with common operators +,-,*,/.
(see 5.4 http : //docs.python.org/library/stdtypes.html for a complete list of operators)
>>> a = 6/5 # ass igns integer r e su l t of 6/5 (1) to var iab le a
>>> b = 6./5 . # ass igns f l o a t r e su l t of 6/5 (1 .2) to var iab le b

2.2 Strings
Strings in Python are identified as a contiguous set of characters in between quotation
marks.
>>> a = ”Spam_Eggs” # ass igns sequence of characters to var iab le a
>>> a = ’Spam_Eggs ’ # does the same

Strings also work with common operators +,*.
>>> a = ”Spam_Eggs” # ass igns sequence of characters to var iab le a
>>> a * 2
. . . ’Spam_EggsSpam_Eggs ’
>>> a + ’Eggs ’
. . . ’Spam_EggsEggs ’

There are also several string methods available, that may help working with strings. For
now, you may think of methods as functions attached to an object (in this case a string
object), which are triggered with a call expression and may or may not return some
result.
Syntax :
r e su l t = var .method_name(args)

Methods are covered in more detail later on.
>>> a = ”SpamEggs”
>>> resu l t = a . upper () # transform st r ing into uppercase
>>> print r e su l t
. . . ’SPAMEGGS’
>>> resu l t = a . replace (’Spam ’ , ”Boiled”) # replace substr ing with new one
>>> print r e su l t
. . . ’ BoiledEggs ’

1

2.3 Lists
Lists are the most versatile of Python’s data types. A list contains items separated by
commas and enclosed within square brackets ([]). They work with operators +,* and
slices just like strings.
>>> a = [1 ,4 , ’Spam ’ , ’Eggs ’] # Assigns a l i s t to var iab le a
>>> a + [4] # Operators work l i k e with s t r ing s
. . . [1 , 4 , ’Spam ’ , ’Eggs ’ , 4]
>>> a * 2
. . . [1 , 4 , ’Spam ’ , ’Eggs ’ ,1 ,4 , ’Spam ’ , ’Eggs ’]

Also a whole bunch of methods exist for lists.
>>> a . append(’Beans ’) # Adds an addit ional item to the l i s t
>>> print a
. . . [1 , 4 , ’Spam ’ , ’Eggs ’ , ’Beans ’]
>>> a . remove(’Eggs ’) # Removes the f i r s t entry containing ’Eggs ’ in the l i s t
>>> print a
. . . [1 , 4 , ’Spam ’ , ’Beans ’] # Notice how ’Eggs ’ i s now missing ,

but ’Beans ’ i s s t i l l in there !

A more extended list of methods is found at
http : //docs.python.org/tutorial/datastructures.html.

3 Getting Help
The methods introduced in the prior section are a representative, but small, sample of
what is available. For a complete list of an objects methods you can call the the built-in
dir function.
>>> dir (” aString ”)
. . . [. . . , ’ replace ’ , . . . , ’ upper ’ , . . .]

To ask what they do, you can call the help function.
>>> help (” aString ” . upper)
. . . Help on bui lt - in function upper :
. . .
. . . upper (. . .)
. . . S . upper () -> st r ing
. . .
. . . Return a copy of the s t r ing S converted to uppercase .
. . . (END)

4 Indexing and Slicing
Strings and Lists are sequences - a positionally ordered collection of other object. Se-
quences maintain a left-to-right order among the items they contain. Their items are
stored and fetched by their relative position. Strings for example are sequences of one-
character strings.
To fetch the objects inside sequences we use Python’s indexing expressions

2

4.1 Indexing

With s t r ing s
>>> a = ”Spam_Eggs”

+- - -+- - -+- - -+- - -+- - -+- - -+- - -+- - -+- - -+
| S | p | a | m | _ | E | g | g | s |
+- - -+- - -+- - -+- - -+- - -+- - -+- - -+- - -+- - -+

0 1 2 3 4 5 6 7 8
-9 -8 -7 -6 -5 -4 -3 -2 -1

>>> a [0] # The f i r s t item in a
. . . ’S ’
>>> a [1] # The second item in a
. . . ’p ’
>>> a [- 1] # The l a s t item in a
. . . ’ s ’
>>> a [- 2] # The second l a s t item in a
. . . ’ g ’
Indexing techniques work the same way with l i s t s
>>> k = [”Spam” , ”_” , ”Eggs”]
>>> k [0]
. . . ’Spam ’
>>> k [- 1]
. . . ’Eggs ’
And even on multiple layers
>>> k [- 1] [0]
. . . ’E ’

4.2 Slicing
In addition to simple positional indexing, sequences also support a more general form of
indexing known as slicing. Slicing allows to extract an entire section (slice) in a single
step.
With Str ings
>>> a = ”Spam_Eggs”
>>> a [0 : 4] # S l i c e of a from index 0 through 3 (not 4)
. . . ’Spam ’
>>> a [5 :] # S l i c e of a from index 5 to the end
. . . ’Eggs ’
>>> a [1 : 6 : 2] # The third parameter i s the increment -> ind ice s 1,1+2,1+4 are returned
. . . ’pmE’
>>> a [5 : : - 1] # S l i c e of a from index 5 to 0 (s tar t ing at index 5 with an increment of -1)
. . . ’E_mapS’

Again the same for l i s t s
>>> k = [0 ,1 ,2 ,3 , 4]
>>> k [0 : 3 : 2]
. . . [0 , 2]

5 Control Structures
5.1 Boolean Expressions
Evaluating Boolean expressions and continue based on its value beeing ’True’ or ’False’
is a fundamental concept of (Python-) programming.

3

>>> a = 5.
>>> b = 6.
Syntax :
>>> a == b # checks whether a equals b or not (Note the d i f f e r ence between ’==’ and ’= ’)
. . . ’ False ’
>>> a != b # checks whether a does not equals b or not
. . . ’True ’
>>> a >= b # checks whether a greater or equal b or not
. . . ’ False ’
>>> a < b # checks whether a l i gh t e r b or not
. . . ’True ’
Simple Boolean express ion can be connected by Boolean operators and , or , not
>>> c = 4.
>>> a < b and b < c
. . . ’ False ’
>>> a < b and not b < c
. . . ’True ’

5.2 If, Else, Elif Statement
The if statement of Python is similar to that of other languages. The if statement
evaluates the result of a Boolean expression and continues based on the result beeing
True or False.
Syntax :

Note : Python uses indentation as i t s method of grouping statements
i f expression1 : # I f expression1 i s True :

statement1 # execute statement1
e l i f expression2 : # I f expression1 i s not True and expression2 i s True :

statement2 # execute statement2
. . .
e l i f expressionN -1 :

statementN -1
e l s e : # I f expression1 , expression2 , . . . expressionN -1 are not True :

statementN # execute statementN

Here is a very simple example using the if-statement.
>>> i f 3==4:
>>> k = ’Spam ’
>>> print k
>>> e l i f 3 <= 4:
>>> print ’Eggs ’
>>> e l s e :
>>> print ’Spam_Eggs ’
. . . ’Eggs ’

5.3 While, For Loops
A loop is a construct that causes a section of a program to be repeated a certain number
of times. The repetition continues while the condition set for the loop remains true.
When the condition becomes false, the loop ends and the program control is passed to
the statement following the loop.

4

5.4 While
The while loop is one of the looping constructs available in Python. The while loop con-
tinues until the expression becomes false. The expression has to be a logical expression
and must return either a true or a false value
Syntax :

while express ion == True : # while express ion i s True :
statement # execute statement

Here is a very simple example using the while loop.
>>> k = 0
>>> while k<3:
>>> print ’k = ’ ,k
>>> k = k+1
. . . k = 0
. . . k = 1
. . . k = 2

5.5 For
The for loop in Python has the ability to iterate over the items of any sequence, such as
a list or a string.
Syntax :

fo r object in sequence : # For every object in sequence :
statement # execute statement

Here is a very simple example using the for loop.
k = [0 , 1 , 2]
>>> for item in k : # Note : You can name the i t e r a t o r var iab le (here ’ item ’) as you l i k e
>>> print ’ item = ’ item
. . . item = 0
. . . item = 1
. . . item = 2

6 Exercise
Mandatory Function to solve the excercise
>>> aList = range (n ,N) # Creates a l i s t with numbers from n to N-1
>>> ListLength = len (aList) # Returns the length of a given sequence
>>> 14%3 #Modulo Operator in Python

1. (a) Calculate all prime numbers up to N = 100.

2. (b) Write a sorting algorithm using Python’s Control Structures that puts all num-
bers of a list in ascending order. To create a list filled with numbers (0>N>100)
in random order use

5

>>> from random import shu f f l e
>>> numbers = range (100)
>>> shu f f l e (numbers)

3. (Advanced) Write a function, that helps you to search for a function or method
inside one of Python’s objects. For instance, you may want to use a function of
the SciPy module, that is able to compute the Fourier Transform of a given signal.
Unfortunately you really can’t remember the name of that function or how to use
it in detail. Your function call should look like the following example.
>>> import scipy
>>> find_method(scipy , ” f ou r i e r ”)
. . . 4 poss ib l e methods found . Show help? [y/n]
>>> y
. . . (The documentation of the poss ib l e methods are shown here)

6

