1 Python Scripting fiir Physiker - Handout W2

2 Built-in functions

Python has a comparably huge standard library, to there are several useful built-in
functions in Python. A short selection will be presented here:

e print a
Prints variable a to the screen. print is implemented as both a keyword and a
function in Python 2.x.

>>> ”Hello World”
Hellow World

>>> a,b,c="Hello” ,”World” ,1.
>>> c,a,b

1.0 Hello World

o int(arg),float(arg),str(arg) ...
Converts to integer, float, str etc. if possible, and returns the converted value.

>>> int (7.9)
7

Note: int(arg) shaves off decimal places, so it basically rounds down.

o raw__input(prompt)
Opens an input prompt on the screen and waits for input, terminated by enter.

>>> a=raw__input(”Enter String:”)
Enter String:

... Hello World

>>> a

Hello World

o min(args), max(args), sum(args)
Returns the minimum, maximum or sum value of a the given arguments or se-

quence.

>>> min(5,3)
3

>>> a=[3,1,5,2,4]
>>> min(a)

1

>>> a:[[S 72] 7[8 71} 7[2 72H
>>> min(a)

(2,2]

o len(obj)
Returns the length, or number of elements, of a sequence. For strings the number
of characters is returned.

>>> a="Hello”

>>> len (a)

5

>>> a=[8.,”Spam” ,[1,2,3],9.]
>>> len (a)

4

 range(start, stop [, step])
Returns a list of integers. [start, start + step, start + 2 * step, ..., start + n * step

< stop]

>>> range (4,10,1)

[4,5,6,7,8,9]

>>> range (4,10,3)

[4,7]

Note: The stop value \textit{not} part of the returned sequence.

3 Function definition

Of course Python allows the programmer to define his or her own functions. The keyword
def (short for define) is used for that.

Syntax:

function__name(args):
statementl
statement2

defines function ’function_ name’

expression # expression is returned

A simple example of the definition and calling of a function:

>>> multiply (a,b): # Defines the function ’multiply’ with arguments a,b

>>> result=a*b # Variable ’'result’ stores the value of the multiplication d
>>> result # Returns the value of ’result’

>>> c=multiply (2,4)

>>> ¢

8

Note: The return type depends on the arguments:

>>> d=multiply (2,” vier”)
>>> d
viervier

4 Built-in Type: Dictionary

A useful Python data type is the Dictionary. It’s basic functionality is that of a
hash in other languages, it stores pairs of keys and associated values. This allows the
programmer to easily map values to "human-readable” keys.

f a

and b

Syntax:
dict = {’key’:value, key2’:value2} # Initializes a dictionary

dict ["key3’']=value3 # Adds a key value pair to the dictionary

>>> Max = {’Name’ : ’Mustermann’, ’Alter’: 25}

>>> Max[”Beruf”] ,Max[”Tel”]="Taxifahrer”,123456

>>> Max|[” Alter”] # returns the value associated with key ”Alter”
25

>>> ”Beruf” Max # Checks whether the key ”Beruf” exists in Max
True

>>> key Max: # Iterates over all keys in Max

>>> key,”: 7 ,Max[key]

Beruf : Taxifahrer
Tel : 123456

Name : Mustermann
Alter : 25

The dictionary elements are the key-value pairs. It has to be noted that unlike lists or
tuples the order of the dictionary elements does not depend on the order in which the
elements were added to the dictionary, it is in fact arbitrary.

5 String formatting

Oftentimes it is useful to format strings in a certain fashion, for example when exporting
measurement data. String formatting borrows its syntax heavily from C, so the basic
string formatting control characters are the same.

o Line feeds and tabulators
Line feeds are created by \n and tabulators are created by \t:

>>> a="a\tb\nc\td”

>>> a
a b
c d

o Placeholders
It can be useful to use a certain output string format multiple times, but keep
some parts of the string variable. It is possible to define such strings with the use
of placeholders. A placeholder for a certain data type is defined via %type. This
syntax borrows heavily from C, too.

Syntax
%s : string; %i : iteger; %f : float;
%4.3f : the float number will have a minimum length of 4,

will be rounded to the third decimal digit

string_ name="%s%f " %(varl , var2) # defines a string where the placeholders are
replaced by str(varl) and float(var2), respg¢

>>> Day=10.

>>> Monat="0Oktober”

>>> a="Heute ist der %f. %s.”%(Tag,Monat)

>>> a

Heute ist der 10.0000000. Oktober.

>>> a="Heute ist der %i %s.”%(Tag,Monat)

ctively

>>> a
Heute ist der 10 Oktober.

o Placeholders and mapping keys
To aid in keeping the complete picture of a formatting string, Python offers the
possibility to use Dictionaries to fill placeholder variables:

>>> a="""Well, there’s egg and bacon; egg sausage and
bacon; egg and %(food)s; egg bacon and %(food)s;
egg bacon sausage and %(food)s; %(food)s bacon
sausage and %(food)s;””"%{”food”: "SPAM”}

All placeholders with the key food’ get replaced by the associated dictionary entry.

6 File Input/Qutput

Working with datasets necessitates the possibility to read and write files. Python offers
the very simple function open to open file objects for reading and writing from and to
text files:

>>> filel=open(”file.txt”,”r”) # opens "file.txt” for reading
>>> filel=open(”file.txt”,”w”) # opens "file.txt” for writing from the beginning
Warning!: existing ”file.txt” is overwritten
>>> filel=open(”file.txt”,”a”) # opens "file.txt” for writing, but written data
is appended to the end of the file
if the file does not exists, this is the same as
opening a file for writing ('w’)

The created object filel’ can now be used to read from the file or write to it. A single
line can be rea,d as a string, by the readline method of the file object.

file.txt ascii-datei

Xy z
123

>>> filel=open(”file.txt”,”r”)

>>> filel .readline () # returns the first line of 7file.txt”
'x y z{\backslash}n’

>>> filel .readline () # returns the second line of ”file.txt”
7\n7

>>> filel .readline () # returns the third line of 7file.txt”
12 3°

Note: When there are no further lines in the file object, 'readline()’ returns an empty
string ”
The method ’split’ on strings can split a string in multiple substrings:

>>>’1 2 37 .split ()
[717,7277737
>>>int (71 2
1

]
37.split ()[0])

To write to the file ’filel’ use the write method:

>>> filel=open(”file2 .txt”,"w”) # creates ’'file2.txt’ and opens for writing
>>> filel .write("x y 2z”) # writes ’x y z’ to the end of ’file2.txt’
>>> filel.write(”1 2 37) # writes '1 2 3’ to the end of ’file2.txt’

Note: Line feeds have to be added explicitly, the contents of ’file2.txt’ would now be: x
yzl23

>>> filel=open(”file2.txt”,”w”) # creates ’'file2.txt’ and opens for writing
>>> filel.write(”’x y z\n") # writes 'x y z’ to the end of ’file2.txt’
>>> filel.write(”1 2 37) # writes ’1 2 3’ to the end of ’'file2.txt’

'file2.txt’ now would have the content: x y z 1 2 3

It is important to note that 'write’ does not immediately write the lines to the output
file. To ensure that the lines are written to the file, close the file object using its 'close’
method. The file will be written to the file system, and the associated file object is
destroyed.

>>> filel=open(”file2.txt”,”w”)
>>> filel . write(”x y z\n")

>>> filel.write(”1 2 37)

>>> filel.close ()

>>> less datei2.txt

'file2.txt’ now has the content: x y z 12 3

7 Exercises

1. Define a function which calculates a number of K points of a polynomial P(z) =
204+ 2! + .. 4+ 2V "1+ 2V in the range z, < x < x.. N is to be determined by the
user when the function is called. Example:

>>> x,y = poly(0,10,5) # xs=0; xe=10; K=5
Choose polynomial order

L2

>>> X,y
[0,2,4,6,8] , [1,7,21,43,73]

2. Define a funciton which saves the result of (1) to a file. Example:

>>> save(x,y)

3. Define a function which reads in the file created in (2) Example:

>>> x,y=load ()
>>> X,y
[0,2,4,6,8] , [1,7,21,43,73]

4. (Advanced) Create an object which has a method next() which returns the next
prime number in the range Ny < N < N.. The method may not calculate all
prime numbers up to N with each call. Example:

>>> prime nums=primes(10,100)

>>>
11
>>>
13

>>>
17

prime_nums. next ()
prime_nums. next ()

prime_ nums. next ()

