1 The "Hangman”-Challenge

"Hangman” is a simple word-guessing game that can be implemented with python fairly
easy. Most of you may know it as "Galgen-Raten” - If you have absolutely no idea what
"Hangman” or "Galgen-Raten” is, you may want to check Hangman Wiki for a brief
explanation.

The idea behind the "Hangman”-Challenge is to give you the opportunity to practise
what you’ve learned so far in a playful manner. You don’t need any function or methods
we haven’t introduced yet. If you feel otherwise - use Google or ask!

1.1 Exercise (60 to 90 min)

Implement the Hangman game in python. We already prepared a file that contains
several words to be used in the Hangman game (Word List). We also prepared a small
list of milestones you should achieve throughout the challenge, which should give you a
good idea how to solve the challenge.

o (1) Take a piece of paper and write down what kind of variables you need, functions
you need to design, and how the program should be structured. Be specific! Before
you begin writing you should already have a good idea how the final program should
look like (15 min)

e (2) Implement all necessary function and test them. A good idea for some func-
tions would be something that prints formated output for the hangman game,
somethings that selects a random word from the provided word.dat file and some-
thing that checks if the user has picked the correct character or not (30 min)

o Take your idea from (1) and your functions from (2) to create the hangman game.
(15 min for the implementation and 15 min for bugfixing)

A typical implementation of the Hangman game would produce the following output
each round:

Round 6 (4 lifes left)

The Current Word :Tr a _n__ an
Characters already picked: anr h t
Choose a new character type ’Solve’ to guess the word:

>>>

http://en.wikipedia.org/wiki/Hangman_%28game%29
http://www.ieap.uni-kiel.de/et/people/drews/Python_Scripting/W2/

2 Python Scripting fiir Physiker -Handout W3

An important concept of python is the ability to store functions, classes, and variables in
so-called modules. This concept is called modularisation and allows to break a program
into several smaller parts that are each stored in different python scripts. The obvious
benefit is here to organize a complex project by dividing it into several smaller parts,
that can be maintained independently from the rest of the program.

2.1 Import Modules

Python provides several built-in modules, which are already accessible withing the in-
terpreter, as well as several "third-party” modules, which have to be installed first (see
Installation.pdf for a brief explanation). To gain access to the module scope, we first
have to import of using the import keyword.

>>> random #import of the random module
>>> dir (random) #shows all objects of the module
[..., ’randint’, ... ,’uniform’, ...]

To gain access to functions and variables of a module, you use the same syntax as with
methods.

Syntax:
Modulname . Funktion ()

Beispiel :

>>> a=random.randint (0,10) #Accessing the randint function of the random module
>>> a

4

>>> b=random.uniform (0,10) #Acessinf the uniform function of the random module
>>> b

5.0087110427737924

You can also add functions and variables from a given a module to the namespace of
the current script. This way you don’t have to type the module name in front of the
function every time you want to use it. Instead you call the function as if it is defined
in the current python script.

>>> math sin, pi #import sin and pi from module math

>>> sin (pi)

0.0

>>> math sin as Sinus #lmport sin and add it to the namespace as Sinus
>>> Sinus(pi)

0.0

You can also add all available function and variables to the current namespace of your
script.

>>> math *
>>> cos (pi)
1.0

It is important to know, that all variables and functions of the given module are added to
the current namespace and that they possibly overwrite existing variables and function
in your current namespace.

>>> path = ”/data/datenfile.txt”
*

>>> os
>>> path
<module ’posixpath’ ’/usr/lib /python2.6/ posixpath.pyc’™>

2.2 Built-In Modules

As already noted, there are a lot of built-in modules already available in any standard
python installation. A complete list of these modules can be found under Standard
Library. Throughout the lecture we will introduce and explain some of them in detail.

2.3 "User-created” modules

To import your own functions and classes from external scripts (instead of using copy
and paste!!) you can also create your own modules. In general you can use every python
script as a module.

funktionen.py
gerade (x,a=1,b=0):
Returs the value a*x+b
a*x+b
f -parabel(x,azl,bzo,cz()):

Returs the value a™*(x+b)**2+c

a*(xt+b)**2+c
>>> funktionen gerade , parabel
>>> gerade (2)
2
>>> parabel (2)
4

In this example the script funktionen.py lies in the same folder from which you called
python. When you import a module, python automatically searches for this module in
a list of paths, that includes the PYTHONPATH (which is a environment variable you
can set in Windows, Linux, and Mac OS), the standard path of python extensions (this
is where all your installed ”third-party” modules go), and the current path (where you
started the python interpreter).

http://docs.python.org/library
http://docs.python.org/library

	The "Hangman"-Challenge
	Exercise (60 to 90 min)

	Python Scripting für Physiker -Handout W3
	Import Modules
	Built-In Modules
	"User-created" modules

