SupraThermal Electrons and Protons (STEP) on Solar Orbiter

- Trigger levels and iron detection -

Jan Christoph Terasa

IEAP Universität Kiel, Germany

November 22, 2017

Outline

Trigger levels

Level 1 trigger Level 2 trigger Level 3 trigger

Detection of Iron

Input spectra GEANT4 simulations

Trigger levels

Level 1 trigger Level 2 trigger Level 3 trigger

Detection of Iron

Input spectra
GEANT4 simulations

Reminder: STEP - Entrance system

Reminder: STEP - integral sensor head

Reminder: STEP - magnet sensor head

Level 1 trigger - ASIC

Detector pixels are bonded to Ide-Fx ASIC, which acts as charge-sensitive-amplifier, pulse shaper and our Level 1 trigger.

Level 1 trigger - Shaper principle

Basic pulse shaper principle [Spieler - Semiconductor Detectors]

Level 1 trigger - Single pixel hit

Detection principle of a single pixel hit

Level 1 trigger - Results

- Trigger mask: Digital 32 bit value of hit pixels
- Analog signal(s) proportional to energy loss in every hit pixels*

Trigger mask: 8, 11, 15

Level 1 trigger - * Caveat

In case of multiple hits, each of the hit pixel could have deficient energy loss:

Level 2 trigger

Level 2 trigger gets the hitmask and selects the appropriate Level 3 trigger to run:

Trigger class	Detector ID	No. of hits	Hist base address
0	0	1	0×4000
1	1	1	0×5000
2	0	≥ 2	0×6000
3	1	≥ 2	0×6100

Level 3 trigger

Demonstration on laptop

Level 3 trigger - Calibration Data Result

Result of level 3 trigger for FM calibration data using Ba133 radioactive source @ address 0x4000

Trigger levels

Level 1 trigger Level 2 trigger Level 3 trigger

Detection of Iron

Input spectra
GEANT4 simulations

Proton spectrum during solar maximum at 1 AU

(image credit: ISIS-EPI collaboration) [https: //directory.eoportal.org/web/eoportal/satellite-missions/p/psp]

Fluence of O

(image credit: Richard Mewaldt, Caltech)
[https://en.wikipedia.org/wiki/Advanced_Composition_Explorer]

Use coronal abundances as solar wind abundances

Element	Coronal abundance	
Н	$1.5 imes 10^6$	
He	$1.28 imes 10^5$	
C	493	
0	1000	
Fe	187	

[Reames 2014] Element Abundances in Solar Energetic Particles and the Solar Corona

Modeling of solar spectrum

based on proton spectrum by Mewaldt, assume $v_{sw}=500\frac{\rm km}{\rm s}$ and $\sigma_{v_{sw}}=40\frac{\rm km}{\rm s}$ for core.

GEANT4 Simulation setup

Simulate response of a single pixel:

- Particles: e-, H, He, C, O, Fe
- $E_{kin} = 1 \text{ keV} \dots 10 \text{ MeV}$
- N = 4000000

Response function of electrons

Response function of protons

Response function of Carbon

Response function of Iron

Detection efficiency of elements

Н

eavy elements in the range 1 keV/nuc \dots 10 keV/nuc are detected in all energy channels of STEP

Model spectrum

Composition of different energy channels

Composition of different energy channels

Composition of different energy channels

Composition of STEP energy channels

Thank you for your attention!

Phase space

