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Structure of my Talk

 Origin and transport of radiation in the heliosphere

 Particle radiation at Earth: ISS (and Mir)

 Particle radiation at and on the Moon

 Particle radiation during the cruise to Mars: MSL

 Particle radiation on the surface of Mars: MSL

 Implications for human exploration
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Space Radiation Sources Close to Earth
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Galactic Cosmic Rays:
Very high energies, H through U
Solar modulation, predictable
Highly penetrating

Solar Energetic Particles:
High energies
Solar activity, unpredictble
High dose rate variability (up to ~1000)
Can be shielded

Trapped Radiation (Radiation Belts):
Very high energies, protons, electrons
Very high dose rate
Highly penetrating
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Radiation Sources Close to Earth: Solar

Courtesy: S. Burmeister

Solar Particle Event:
April 2001

GCR

trapped SPE
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2009
closer to 
solar min

2013
closer to 
solar max

Radiation Sources Close to Earth: GCR

Burmeister et al., 2016

GCR
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2009
@ 350 km

2013
@ 420 km

Radiation Sources Close to Earth: Trapped

SAA
(trapped)

Log scale!

Burmeister et al., 2016
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Radiation Sources Close to Earth: Comparison

Nov 1997 SPE:

Measurements in Mir

Comparison of the effect 
of the GCR, SPE, and 
trapped components

Measured spectrum of 
energy deposit in a 315 
micron Si solid-state 
detector.

Courtesy: S. Burmeister

SEP

SAA

GCR
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Particle Radiation in the Heliosphere
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Particle Radiation in the Heliosphere
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Origin of SPEs
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Origin of SPEs

Mewaldt, 2005

Mewaldt, 2006
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For a 1 MeV proton,
r

c
 is nearly 30,000 km 

at 1 AU

Radiation Transport in the Heliosphere 

● Electrically charged
ions and electrons

● Interplanetary magnetic field
controls propagation

● Solar magnetic field matters
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Large-scale interplanetary magnetic field organized along Parker spiral

Charged energetic 
particles are tied to 
magnetic field...

SOHO, STEREO, 
Messenger widely 
separated in Nov‘ 11

STA

SOHO

M

STB



ICRS 13, RPSD 2016, 2016-10-06 14rfws, ieap/CAU

How does the Sun connect to the heliosphere?
Wide spread events seen in 

- ions, 
- electrons, 
- and 3He

This is sobering...

(can we connect S-H?)

… but also at 1 AU!

(Gomez-Herrero et al., 2015) (Richardson et al., 2014)

SOHO

STEREO A

STEREO B

Messenger

We need to better understand the connection!
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Radiation is the long-lasting risk 
for astronauts. Radiation damage 
can persist after the end of a 
long-duration space flight.

Radiation must be measured!

Personal Dosimeters

Phantom experiments 
MATROSHKA

Radiation Protection in Space: ISS

(Photos courtesy G. Reitz)
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Radiation 
Protection 
in Space:
ISS +++ + + + + +

COLUMBUS module
median shielding ≈100 g/cm2

Aluminum Equivalent Thickness [g/cm2]

Aluminum Equivalent Thickness [g/cm2]
1 10 100

1 10 100

(courtesy Daniel Matthiä)

158 μGy/d, 448 μSv/d, Q = 
2.84, Semones et al. (2009)

150 - 157 μGy/d,  496 – 517 
μSv/d, Q = 3.30, Burmeister et 
al. (2012)
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Radiation in Space

ISStrapped

Space suit
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Origin of Galactic Cosmic Rays: Supernovae

How are nuclei simultaneously created and accelerated?
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59Ni decays into 59Co
via electron capture
T

1/2
 = 76,000 years

Measured 59Ni/59Co 
< 0.055 implies 
acceleration > 
100,000 years after 
creation of 59Ni

60Fe -decays into 60Co
with T

1/2
 = 2.62 Myrs. Its 

measurement implies 
acceleration within few 
Myrs of nuclei creation

Wiedenbeck et al., 1999 Israel et al., 2015

Origin of Galactic Cosmic Rays: OB-Associations

One supernova creates GCR nuclei, a second one accelerates them

==> OB Associations
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Composition of Galactic Cosmic Rays

Courtesy C. Zeitlin

Fe

C O

H

He
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Composition of Galactic Cosmic Rays & Dose

Courtesy C. Zeitlin

Fe

C
O
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Composition of Galactic Cosmic Rays & Dose

Courtesy C. Zeitlin
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GCR Modulation

2009

2013
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GCR Modulation

Potgieter et al., 2013
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(Hathaway & Wilson, 2006)
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We don't really understand the solar 
dynamo which underlies all solar activity.

Predictions
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Predictions

How is meridional 
circulation “closed” 
at the poles?
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(Owens, 2008)(Mewaldt et al., 2010)

The Consequence:

 Lowest solar wind dynamic pressure
 Smallest total heliospheric flux
 Smallest CME rate

… were all not predicted. 

We need to better understand the Sun!
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Risks Assessments for all DRMs (Jan 2015) 

29

A – Accepted       RM- Requires 
Mitigation

   Green  – controlled                                      Yellow  – partially controlled                                     Red – uncontrolledRedYellow

In Mission Risk - Operations Post Mission Risk – Long Term Health

Human Spaceflight Risks

Radiation!
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+100%

+55%

-25%

(Mrigakshi et al. 2013a)

GCR models show substantial differences in their predictions
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T.P. Dachev et al. An overview of RADOM results for earth and moon radiation environment on 
Chandrayaan-1 satellite, Advances in Space Research 48 (2011) 779-791

Radiation

altitude

Radiation is modulated by changing shielding by the Moon

Dose Rate Measurements at the Moon?
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T.P. Dachev et al. An overview of RADOM results for earth and moon radiation environment on 
Chandrayaan-1 satellite, Advances in Space Research 48 (2011) 779-791

Dose Rate Measurements at the Moon?

Dose rates :  

~ 100 km: 227 µGy/d

~ 200 km : 257 µGy/d

Solar Particle Event
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Particle Radiation Measurements at the Moon

Prettyman et al., 2006

Interaction of GCR with lunar regolith 
leads to excited nuclei and gamma 
ray line emission
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Particle Radiation Measurements at the Moon

Prettyman et al., 2006

Interaction of GCR with lunar regolith 
leads to excited nuclei and gamma 
ray line emission
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Dose Rate Measurements on the Moon
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Dose Rate Measurements on the Moon?
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Dose Rate Measurements on the Moon?

None!
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Dose Rate Measurements on the Moon?

Lunar Neutron and Dosimetry (LND) Experiment on 
Chang‘E-4 will provide such measurements (launch 2018)
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Astronauts on Mars here as motivation

Implications for Human 
Exploration

- Reliable predictions
- Interaction with environment
- Measurements

Implications for Astrobiology:
- preservation of bio-signatures
- limits for life? 
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 Charged particles (1 < Z < 
27) up to 100 MeV/nuc

 Neutral particles (n, γ)  up 
to 100 MeV

 LET
 Composition
 Time series
 Autonomous operations

Requirements:

Radiation Measurements on Mars

?
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charged 
particle

B

A

C

D

E

F



n

 Charged particles (1 < Z < 
27) up to 100 MeV/nuc

 Neutral particles (n, γ)  up 
to 100 MeV

 LET
 Composition
 Time series
 Autonomous operations

Requirements: Solution:

The Radiation Assessment Detector (RAD)
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RAD:
 Mass: 1,56 kg
 Power: 4,2 W
 Data rate: ~130 bps
 RSH: FM & FS 
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During cruise, RAD was 
heavily shielded by 
inhomogeneous and 
anisotropic structures.

1 g/cm2 < shielding < 80 g/cm2

This complicates interpretation 
of data. 
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Summary of cruise radiation environment of MSL

GCR

SEPs

eq. Dose from SEPs: 
24.7 mSv for all cruise

eq. Dose from GCR: 
1.84 ± 0.33 mSv per day

SEPs only ~ 5% of GCR

GCR dominated radiation 
exposure during RAD's cruise
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Summary of cruise radiation environment of MSL
(This can be measured accurately!)

Estimated 
variability

Two 180-day 
legs return trip

RAD cruise 
measurement SEPs

24.7 mSv (5% 
of all)

Orders of 
magnitude

?

RAD cruise 
measurement  GCR

1.84 mSv/d 0.33 mSv/d ± 
20%

662 ± 108 mSv 
± 20%

6-month stay of astronaut 
on ISS

75-90 mSv/
(a/2)

20,00% 150-180 mSv

Radiation  worker limit 
(ICRP)

20 mSv/a n/a

Average exposure of 
normal population

4 mSv/a Wide range,  
radon!

Allowable additional 
exposure norm. pop.

1 mSv/a n/a
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Secondary  radiation (neutrals!) plays an important role! (Ehresmann, 2011)

Mars atmospheric pressure is 
~ 0.6% that of Earth. At MSL 
this corresponds to ~ 21g/cm² 
of CO2 shielding. Quite 
different from Earth!

Pfotzer maximum 
close to surface
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RAD Surface Measurements

diurnal variation
heliospheric 
modulation

solar 
particle 
events

Forbush decrease (CME)
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RAD Surface Measurements
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RAD Surface Measurements of n and γ
charged 
particle

D

E

F



n

Modeled Instrument Response Function (IRF)

Need to invert

accounting for Poisson statistics.
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RAD Surface Measurements of n and γ

Köhler et al., 2014
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Radiation exposure on a 
mission to Mars:

Cruise: 662 +/- 108 mSv
Mars: 320 +/- 50 mSv

Total ~ 1000 mSv

For comparison:
6 months ISS: 75-90 mSv
radiation worker: 20 mSv/y
CT-scan: 8 mSv

(Zeitlin et al., Science, 2013)

Summary of RAD measurements



ICRS 13, RPSD 2016, 2016-10-06 53rfws, ieap/CAU

Implications for human exploration

 Space particle radiation is complex!
 “Shielding“ primarily “magnetic“
 Space weather predictions are still 

very difficult
 Large variability (solar, 

heliospheric, seasonal, diurnal)
 Secondary radiation important (n/γ)
 Where should we live on Mars?

Implications for non-terrestrial life?
Exo-, astrobiology?

Preservation of bio-signatures?
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Summary, Conclusions, and Thanks

Radiation in heliosphere very variable
Models are even more variable...
First radiation measurements on another planet
Radiation environment on Mars quite different than 
on Earth and important for future human exploration

Modulation is an important „shielding“ factor
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Ionizing radiation breaks chemical bonds and 
 produces radicals and oxidants.

Result: Destruction of large organic molecules (if there is 
no repair mechanism)

Destruction of Organic Compounds by Radiation
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Previous models: 50 – 150 mGy/y 
RAD measurements: 76 mGy/y 

Organic molecules are efficiently 
destroyed at a depth of 4-5 cm. In 
650 million years only 1/1000 
survives.

How many after 3.8 Gy?

==> Half of the organics should 
still be around if the soil were only 
exposed for 65 million years.

How long could organic molecules 
survive ionizing radiation environment?
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(Farley et al., Science, 2013)

36Ar

21Ne

3He

Sheepbed was 
exposed for only 
80 ± 30 million 
years!

Age determination with cosmogenic isotopes
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erosion by
windblown sand

> 3 m

Future site of 
Cumberland drill hole

buried

first exposure

exposed

> 80 Ma

80 Ma

today

surface with youngest 
  cosmic ray exposure

Yellowknife Bay

scarp

Average scarp 
retreat rate 1m/Myr

scarp

scarp

(Farley et al., 2013)

> 3m
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Detectio
n of o

rganic m
olecules on Mars
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Summary, Conclusions, and Thanks

Radiation in heliosphere very variable
Models are even more variable...
First radiation measurements on another planet
Radiation environment on Mars quite different than 
on Earth and important for future human exploration

Organics can be and have been detected on Mars
Mars was habitable – but is it still so?
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