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Chapter 2

Single Particle Motion in a
Magnetized Plasma

2.1 Introduction and Repetition

In this section, we consider the motion of a particle in a magnetic field. There is
more to this easy-sounding problem than meets the eye and a lot of interesting
phenomena can be understood based on the equation of motion for a particle
of mass m and charge q (expressed in units of the elementary charge, e),

d~p

dt
= q

(

~E + ~v × ~B
)

, (2.1)

where ~p = γ m~v is the relativistic particle momentum, and

γ
.
=

1
√

1− v2 / c2
. (2.2)

The particle’s total energy is given by U = mγc2, its kinetic energy is T =
(γ − 1)mc2. If the electric field vanishes everywhere at all times, ~E = 0, then

the induction equation implies that ~B remains constant in time, ~̇B = 0. In
this case, we can compute the scalar product of the equation of motion with
momentum ~p,

d~p

dt
· ~p = q

(

~v × ~B
)

· ~p = 0, where
d~p

dt
~p =

1

2

dp2

dt
(2.3)

because velocity ~v is parallel to momentum, ~p. This tells us that the magni-
tude of the momentum is conserved in a magnetic field, d|~p| / dt = 0, and
hence that total kinetic energy U as well as the Lorentz factor are conserved
quantities as well. This is nothing else than the well-known fact that a mag-
netic field performs no work. Expanding momentum in the equation of motion

9



10CHAPTER 2. SINGLE PARTICLEMOTION IN AMAGNETIZED PLASMA

allows us to find the acceleration acting on the particle

d~v

dt
=

q

mγ

(

~v × ~B
)

. (2.4)

We now define a new vector quantity, ~Ω,

~Ω
.
=

−q
mγ

~B (2.5)

which allows us to rewrite the previous equation 2.4

d~v

dt
= ~Ω × ~v. (2.6)

~Ω is called the gyro frequency, in the non-relativistic limit, v2 / c2 ≪ 1, it
tends towards the cyclotron frequency.

Exercise 2.1 Check that the units of Ω are correct.

Next we divide the motion of the particle into a part that is parallel to the
magnetic field and a part perpendicular to it, as sketched in Fig.2.1. Defining

~rc

~B

v‖

~v⊥

z

x
y

Figure 2.1: The particles motion can be visualized as a superposition of a
circular motion perpendicular to ~B and a linear motion along ~B.

the z component of our coordinate system to point along ~B, we can now rewrite
eq. 2.6 in components

v̇x = Ωy vz − Ωz vy = −Ωz vy,

v̇y = Ωz vx − Ωx vz = Ωz vx, (2.7)

v̇z = Ωx vy − Ωy vx = 0.

(2.8)
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Because ~Ω points along ~B, Ωx = Ωy = 0, implying that v̇z = 0, i. e. a uniform
motion along z. Hence we may consider the motion to be a superposition of a
linear motion along ~B and a circular motion which can be described by

~v⊥ = ~Ω× ~rc, (2.9)

where ~rc is the position vector of the particle as seen from the field line it is
circling or from an imaginary point that lies at the center of the circle and
moves along the magnetic field at a speed v‖. This center is called the guiding
center, rc is the gyro radius, in the non-relativistic case it reduces to the Larmor
radius. It can be found using eq. 2.22 and taking the vector product of eq. 2.9
with ~Ω, ~v⊥ × ~Ω,

~rc = − q

mγ

~v × ~B

Ω2
=

mγ

q

~B × ~v

B2
=

1

q

~B × ~p

B2
. (2.10)

Evaluating rc for the field configuration studied here, we find that

rc = |~rc| =
1

q B2

(
B2

z p
2
y + B2

z p
2
x

)1/2
=

|p⊥|
q B

=
p sinα

q B
, (2.11)

where the angle α defined by tanα = p⊥/p‖ is the pitch angle. For a circular
motion (i. e., α = π/2) we have rc = p/(qB). The quantity

cB rc =
p c

q
(2.12)

is called magnetic rigidity and has units Volts, as is readily verified.

Exercise 2.2 Convert between energy and rigidity for electrons, protons, and
alpha particles and plot the results between 10 keV and 10 GeV.

Exercise 2.3 Determine the gyro radius for solar wind protons (vth ≈ 40
km/s) in an ambient interplanetary magnetic field of 5 nT (this is a typical
value at 1 AU).

2.2 Guiding-Center Motion

Now let us consider the situation where the magnetic field is not uniform, but
varies slowly on a large spatial scale L,

1

L
∼
∣
∣
∣
∣

1

B

∂ Bi

∂xj

∣
∣
∣
∣
, (2.13)

i. e. 1/L is about equal to the largest of the quantities |(1/B)(∂Bi/∂xj)|. In
the following, we will assume that L is always much larger than the distance
travelled by the particle during one gyration period τ = 2π/Ω,

L≫ vτ ≫ rc. (2.14)
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This implies that the magnetic field does not change appreciably within the
gyroradius and that we may use its value at the guiding center for further
computations and that our results will be accurate to within ±(rc/L)

2 or
±(vτ/L)2. Given the position ~x of the particle, the position of the guiding
center is

~xG = ~x− ~rc, (2.15)

and the velocity of the guiding center is

~vG =
d~x

dt
− d~rc

dt
= ~v − d

dt

(
~B × ~p

q B2

)

,

= ~v +
1

q

[

d~p

dt
×

~B

B2
+ ~p× d

dt

(
~B

B2

)]

, (2.16)

where we have inserted the expression for the gyroradius, eq. 2.10. Because
there is no electric field, we know that ∂B/∂t = 0 and hence,

d

dt

(
~B

B2

)

=
∂

∂t

~B

B2
+
(

~v · ~∇
) ~B

B2
=
(

~v · ~∇
) ~B

B2
. (2.17)

The derivative, d/dt = ∂/∂t+ ~v · ~∇ is called the substantial derivative and
needs to be introduced here.

Consider a parcel of a fluid which is moving in space. Let it be at a point
~x1 at a time t0 and have speed ~v1. At a later time, t2 it is at ~x2 with speed
~v2. Let us now consider a quantity in the fluid, e.g., its density, ρ. It will have
changed between the two times and locations:

dρ

dt
.
= lim

t2−→t1

ρ2 − ρ1
t2 − t1

. (2.18)

This derivative is the substantial derivative and describes the change of a
quantity along the movement of the fluid parcel.

Density ρ1 = ρ1(x1, y1, z1, t1) changes to ρ2 = ρ2(x2, y2, z2, t2) and we can
now expand ρ2 into a series

ρ2 = ρ1 +

(
∂ρ

∂x

)

(x2 − x1) +

(
∂ρ

∂y

)

(y2 − y1) +

(
∂ρ

∂z

)

(z2 − z1) +
∂ρ

∂t
(t2 − t1).

We divide this by (t2 − t1) and insert in eq. 2.18 to obtain

dρ

dt
= lim

t2−→t1

(
ρ2 − ρ1
t2 − t1

)

= lim
t2−→t1

[
∂ρ

∂x

x2 − x1
t2 − t1

+
∂ρ

∂y

y2 − y1
t2 − t1

+
∂ρ

∂z

z2 − z1
t2 − t1

+
∂ρ

∂t

]

=

(
∂ρ

∂x

)

vx +

(
∂ρ

∂y

)

vy +

(
∂ρ

∂z

)

vz +
∂ρ

∂t
,

dρ

dt
=

(
∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)

ρ. (2.19)
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Thus we have defined the substantial derivative as

d

dt
.
=

∂

∂t
+ vx

∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
=

∂

∂t
+
(

~v · ~∇
)

(2.20)

It consists of a temporal derivative, (∂/∂t), and a convective derivative

~v · ~∇.
We now return to the motion of the guiding center and insert the equation

of motion for d~p/dt in eq. 2.16, to obtain,

~vG = ~v +
1

q

[

q
(

~v × ~B
)

×
~B

B2
+ ~p×

(

~v · ~∇
) ~B

B2

]

. (2.21)

Now
(

~v × ~B
)

× ~B = − ~B ×
(

~v × ~B
)

= −
[

~v
(

~B · ~B
)

− ~B
(

~B · ~v
)]

. (2.22)

The second term in the square brackets is just the projection of ~v onto ~B
multiplied by B2,

~v‖ =

~B
(

~v · ~B
)

B2
, moreover, ~v⊥ = ~v − ~v‖. (2.23)

and hence eq. 2.22 is just −v⊥B2. Inserting, we have

~vG = ~v‖ + ~p×
(

~v · ~∇
) ~B

qB2
, (2.24)

which tells us that the guiding center exhibits no transverse motion if ~B is
uniform.

So far, we have computed the instantaneous motion of the guiding center.
Very often however, it is more convenient to know the “smoothed” motion of
the guiding center, neglecting all the small changes that may occur over the
course of one gyration. This is done by averaging ~vG over one gyroperiod τ ,

~VG⊥
.
= 〈~vG⊥〉τ

.
=

1

τ

∫ τ

0

dt~vG⊥. (2.25)

Thus we are faced with the problem of evaluating

~VG⊥ =
1

q

〈[

~p×
(

(~v · ~∇)
~B

B2

)]〉

τ

(2.26)

using zero-order quantities for ~p, ~v, ~B, B2, i. e. evaluating these quantities at
the guiding center. Then we can take the guiding center as the origin of our
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coordinate system, just as sketched in Fig. 2.1. Thus Bx = By = 0 and we
have

vx
v

=
px
p

= − sinα sinΩt, (2.27)

vy
v

=
py
p

= − sinα cosΩt, (2.28)

vz
v

=
pz
p

= cosα. (2.29)

Again, just to rub the point in, vz is constant and is independent of the mag-
netic field magnitude (independent of Ω). Hence, we write only the x and y
components of the averaged guiding center motion,

VxG =
1

q

〈

pyvi
∂

∂xi

Bz

B2
− pzvi

∂

∂xi

By

B2

〉

τ

, (2.30)

VyG =
1

q

〈

pzvi
∂

∂xi

Bx

B2
− pxvi

∂

∂xi

Bz

B2

〉

τ

, (2.31)

where the repeated indices, i, imply the Einstein summation convention. In
order to compute these quantities, we need to know the gyroperiod-averaged
products of vipj,

〈vi pj〉τ =
1

τ

∫ τ

0

dt vp sin2 α sin(Ωt) cos(Ωt) = 0, for i 6= j (2.32)

〈vi pj〉τ =
1

τ

∫ τ

0

dt vp sin2 α sin2(Ωt) =
1

2
vp sin2 α, for i = j = x(2.33)

〈vi pj〉τ =
1

τ

∫ τ

0

dt vp sin2 α cos2(Ωt) =
1

2
vp sin2 α, for i = j = y(2.34)

〈vz pz〉τ =
1

τ

∫ τ

0

dt vp cos2 α =
1

2
vp cos2 α, (2.35)

(2.36)
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and evaluate the derivatives (remembering that Bx = By = 0)

∂

∂z

Bx

B2
=

1

B4

(

(
∂

∂z
Bx)B

2 −Bx
∂

∂z
B2

)

,

=
1

B2

∂

∂z
Bx,

=
1

B3

(

Bx
∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

)

Bx =
1

B3

(

~B · ~∇
)

Bx, (2.37)

∂

∂z

By

B2
=

1

B4

(

(
∂

∂z
By)B

2 − By
∂

∂z
B2

)

,

=
1

B2

∂

∂z
By,

=
1

B3

(

Bx
∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

)

By =
1

B3

(

~B · ~∇
)

By, (2.38)

∂

∂xi

Bz

B2
=

1

B4

(

(
∂

∂xi
Bz)B

2 −Bz
∂

∂xi
B2

)

where, B = Bz

=
1

B4

(

(
∂

∂xi
B)B2 − B2B

∂

∂xi
B

)

,

= − 1

B2

∂

∂xi
B. (2.39)

Now we can evaluate the gyroperiod-averaged guding-center motion in x and
y,

VxG =
1

q

〈

py

(

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
Bz

B2
− pz

(

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
By

B2

〉

τ

,

VyG =
1

q

〈

pz

(

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
Bx

B2
− px

(

vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

)
Bz

B2

〉

τ

,

Inserting the previously found expressions for the gyroperiod-averaged prod-
ucts pv and partial derivatives, we find

VxG =
pv

qB2

[
1

2
sin2 α

(
∂

∂y
Bz

)

− cos2 α
∂

∂z
By

]

,

VyG = − pv

qB2

[
1

2
sin2 α

(
∂

∂x
Bz

)

− cos2 α
∂

∂z
Bx

]

.

Next we symmetrize these equations with the aim of writing them more con-
cisely as a vector equation. We can achieve this aim by noting that the x and
y components of the magnetic field vanish and so any quantity that is multi-
plied by them may be added to the equations above with no adverse effects.
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Together with eqs. 2.37 to 2.39 we find

VxG =
pv

q

[
1

2
sin2 α

1

B3

(

By
∂

∂z
B −Bz

∂

∂y
B

)

+

cos2 α

B4

{

By

(

Bx
∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

)

Bz−

Bz

(

Bx
∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

)

By

}]

,

VyG =
pv

q

[
1

2
sin2 α

1

B3

(

Bz
∂

∂x
B −Bx

∂

∂z
B

)

+

cos2 α

B4

{

Bz

(

Bx
∂

∂x
+ By

∂

∂y
+ Bz

∂

∂z

)

Bx−

Bx

(

Bx
∂

∂x
+By

∂

∂y
+ Bz

∂

∂z

)

Bz

}]

.

These lengthy expressions can now be compactly written as a vector equation
which gives us the perpendicular motion of the guiding center in a given non-
uniform magnetic field,

~VG⊥ =
pv

qB




1

2
sin2 α

~B × ~∇B
B2

+ cos2 α

~B ×
[(

~B · ~∇
)

~B
]

B3



 . (2.40)

It is important to remember that this equation is not valid for all non-uniform
field configurations. It was derived under the explicit assumptions that we may
evaluate all quantities at the guiding center and do not need to know them
at the particle’s exact location. This expression is correct up to second-order
terms in rc/L or in vτ/L and no more. It is not a general expression such as
the equation of motion, eq. 2.1.

2.3 Some Drifts

While eq. 2.40 is not as general an expression as the equation of motion of a
particle, it tells us a lot about the motion of the guiding center in a weakly
non-uniform field. The first term in the square brackets of eq. 2.40 describes
the influence of the transverse gradient of the magnetic field strength, the
second results from the curvature of the field lines. The first term can be
brought into a possibly more familiar form by inserting the explicit expression
for the gyroradius (eq. 2.11) and using v⊥ = v sinα. Then we have the usual
expression for the gradient drift,

~VG⊥∇ =
1

2
rcv⊥

~B × ~∇B
B2

. (2.41)
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This describes a drift perpendicular to ~B × ~∇B, i. e. perpendicular to both ~B
and ~∇B. It points in opposite directions for positively and negatively charged
particles because the charge enters as an odd power in these expressions (obvi-
ous in eq. 2.40, hidden in rc in eq. 2.41). An often cited special case of this drift
is of great importance for the modulation of cosmic rays. Consider a greatly
simplified heliospheric current sheet as sketched in Fig. 2.2. The particles

rc

Figure 2.2: ~∇B drift in a very much simplified heliospheric current sheet
(dashed line) configuration.

will drift along the current sheet, positively charged particles in one diection,
negatively charged particles in the other. This may explain the differences in
the fluxes of GCR protons (and, in a limited fashion, electrons) between even
and odd solar activity cycles. However, even in this sketch, and even more so
in reality, our assumption that the gyroradius is much smaller than the scale
length of the non-uniformities of the field is flagrantly violated.

large rc

small rc

x

y

z

~∇B

Figure 2.3: The motion of an ion in a
non-uniform magnetic field exhibits a
drift perpendicular to ~B and ~∇B.

We can also understand this gra-
dient drift from a more physical
point of view. Consider the situ-
ation sketched in Fig 2.3 in which
a magnetic field has a gradient in
the x direction. The radii of cur-
vature decrease along the gradient,
they are large in the weak-field region
but small where the field is strong.
Therefore, a particle’s orbit can not
close anymore and, as we will see, a
drift must set in. To simplify mat-
ters, we have chosen ~∇B parallel to
x and perpendicular to z. The force
acting on the ion in the x direction is

ṗx = q(~v × ~B)x = q(~v × ( ~B0 + δx
∂Bz

∂x
)) (2.42)

where δx = rc cosΩt. Averaged over an orbit and using eq. 2.28, we then have

ṗx = q 〈(vyδx)〉
∂Bz

∂x
= −qrcv sinα

〈
cos2 Ωt

〉 ∂Bz

∂x
. (2.43)
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The time average of cos2 Ωt over one oscillation period is just 1/2, and so, using
eq. 2.11 and v⊥ = v sinα we have for the orbit-averaged force in x direction

〈Fx〉 = −1

2
q
p⊥v⊥
qB

∂Bz

∂x
= −mγv

2
⊥

2B

∂Bz

∂x
= −µ∂Bz

∂x
, where µ

.
=
mγv2⊥
2B

(2.44)

is the magnetic moment of the spiraling particle. Thus, we have a force
acting on the particle in the direction away from the stronger magnetic field!
This force must be balanced as a magnetic field can not perform work and the
balancing force comes just from the drift. Let us assume that there is a drift
in the y direction at a speed vD. Then there is an additional force,

~FD = q(~vD × ~B), (2.45)

which balances the gradient force discussed above. Equating the two forces
yields the drift velocity, ~vD,

−µ~∇B − q(~vD × ~B) = 0 =⇒ ~vD =
µ

q

~B × ~∇B
B2

= ±1

2
v⊥rc

~B × ~∇B
B2

, (2.46)

where we have used the vector identity, eq. 2.22, and the fact that ~vD ⊥ ~B.
As we can see from eq. 2.46, drift velocity depends on the sign of the charge.

Let us now consider the second term in the square brackets in eq. 2.40. It
can be rewritten using v‖ = v cosα. Then we have

~VG‖curv =
γmv2‖
qB4

[

~B ×
{(

~B · ~∇
)

~B
}]

, (2.47)

which again may be more familiar. Remembering that ( ~B · ~∇) ~B is the change

of ~B along ~B we see that the drift is perpendicular to the plane containing the
surface spanned by the curved field line and points in opposite directions for
oppositely charged particles.

~B

Figure 2.4: The motion of an ion in a
curved magnetic field.

In order to familiarize ourselves
with single-particle motion in a
plasma, let us again consider this
drift in some more detail. As an ion
sprials along a curved magnetic field,
it feels a centrifugal force

~Fcf =
mγv2‖
Rcurv

~Rcurv

Rcurv

(2.48)

which points radially outwards. Ac-
cording to the general law for drift

velocities, this results in a drift,

~vcurv =
1

q

~Fcf × ~B

B2
=
mγv2‖
qB2

~Rcurv × ~B

R2
curv

, (2.49)
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which is the well-know expression for curvature drift (e.g., Chen, 1984). The

drift velocity is perpendicular to the magnetic field, ~B, and the curvature
radius, ~Rcurv, as expected.

P′ ~b′
d~b

∆α

~b

P

C

Figure 2.5: Definition of
curvature and curvature ra-
dius.

The connection between eq. 2.49 and eq. 2.47
is easily seen by considering the definition of cur-
vature, as sketched in Fig. 2.5. The curvature, κ,
of a curve, C, is defined as the change of the an-
gle spanned by the tangents to two points on the
curve as the points are moved arbitrarily close
together,

κ
.
= lim

P−→P ′

∆α

∆s
=

dα

ds
. (2.50)

The change in the direction of the magnetic field,
~b′−~b is just ∆α, and this change points opposite
to the radius of curvature. With ~b = ~B/B we
have, from differential geometry,

d~b

ds
= −

~Rcurv

R2
curv

(2.51)

Now the derivative along the curve, d/ds is just that, the derivative along the

curve, (~b · ~∇)~b! Hence,

(~b · ~∇)~b = −
~Rcurv

R2
curv

(2.52)

from which eq. 2.47 follows readily.

2.4 Adiabatic Invariants

Consider the motion of a particle which can be described by a parameter λ. λ
may change slowly under the influence of external forces, this is called adiabatic
change. Slowly means that λ changes only by a small amount during a period
T of the motion

dλ

dt
≪ λ

T
; (2.53)

for dλ/dt = 0 the motion is strictly periodic and has a fixed energy, E. If λ
changes slowly, so does E as some function of λ. This dependence of E on λ
can be expressed by the constancy of some combination, I, of E and λ. This
quantity, I, remains constant even for slow changes of the system. It is called
an adiabatic invariant; a formal derivation can be found using the Hamiltonian
formalism (see, e. g. , Landau and Lifschitz , 1981, vol. I),

I
.
=

1

T

∮

pdq, (2.54)
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where the contour is over a complete period of the motion, T , and p and q are
conjugate canonical coordinates. I can be considered as the area enclosed by
the orbit of the system in phase space (p, q).

In the following we will give adiabatic invariants for the motion of the guid-
ing center in a weakly non-uniform field. There are three adiabatic invariants
for this motion, the first is due to the gyromotion of the particle around the
guiding center (Fig. 2.6). The second comes from a longer time scale, the
bounce time scale sketched in Fig. 2.8 when there is such a scale. The third is
due to the curvature drift and the time scale is the time it takes the particle
to move once around the configuration, e. g. , the Earth’s magnetic field, as
sketched in Figs. 2.9 and 2.10. Adiabatic invariants can be found by consider-
ing quantities that would be conserved if the system were not changing at all,
as we will see in the following three examples.

Let us consider the adiabatic invariant for the motion of a particle in a
weakly non-uniform magnetic field sketched in Fig. 2.6. The particle gyrates

Figure 2.6: Motion of a particle in a weakly non-uniform magnetic field.

around its guiding center; in a uniform field, the angular momentum of the par-
ticle would be a conserved quantity, and we insert it in place of the generalized
momentum into eq. 2.54,

I1 =
1

2π

∮

p sinαrcdϕ =
(p sinα)2

q B
=

p2⊥
q B

=
(mγv⊥)

2

q B
=
mγ

q
2 |~µ|, (2.55)

where we have inserted the expression for the gyroradius and ~µ is the magnetic
moment of the particle gyrating around the guiding-center field line. In this
case, I is often called the first adiabatic invariant. It itself is a conserved
quantity of the motion of the particle in the non-uniform field.

This conservation has important consequences. Consider a particle ap-
proaching a magnetic mirror, sketched in Fig. 2.7. Then the conservation of
the first adiabatic invariant will often lead to a reflection of the particle. This
is easily seen. Because there is no electric field, the kinetic energy of the par-
ticle is conserved and composed of two parts, the parallel and perpendicular
terms: Ekin = 1/2mv2‖ + 1/2mv2⊥ = const. The second term is equal to µB.
Because µ is conserved even with increasing B, the first term needs to change
appropriately to ensure energy conservation. This is achieved by converting all
kinetic energy into gyration energy. When this happens, the particle does not
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propagate parallel to the field anymore, but the guiding center stands still for a
brief moment, before the motion is reversed and the guiding center moves back
along its previous trajectory, resulting in a net change of linear momentum,
∆p = 2p. The strength of the field in the mirror as well as the pitch angle
of the particle determine whether a partice will be reflected at the mirror or
transmitted. Which particles are reflected? Let us consider a region where

~B0

Figure 2.7: Magnetic mirror.

the magnetic field strength is constant, ~B = ~B0, and the region in the mirror
where the particle has no forward momentum anymore, ~B = ~B1. Because of
the invariance of µ we have

1

2
m
v2⊥0

B0

=
1

2
m
v2⊥1

B1

(2.56)

and because of conservation of kinetic energy

v2⊥1 = v2⊥0 + v2‖0 = v20. (2.57)

We rewrite eq. 2.56 and insert eq. 2.57

1

2
m
v2⊥0

B0

=
1

2
m
v2⊥1

B1

,

B0

B1

=
v2⊥0

v2⊥1

,

=
v2⊥0

v20
,

= sin2 α. (2.58)

If we could measure the pitch angles of all particles in the region where ~B = ~B0,
then those would be reflected by the mirror which have a pitch angle α > αm,
for which

sin2 αm =
B0

Bm

. (2.59)
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The previous expressions for the adiabatic invariant can also be written
differently by keeping the gyro-radius at the expense of p⊥,

I1 =
1

2π

∮

p sinαrcdφ =
q

2π

∮

Br2cdφ = qBr2c , (2.60)

which shows that we may consider the conservation of the fist adiabatic invari-
ant as equivalent to the conservation of the magnetic flux through the particle’s
orbit.

Writing this in full relativistic glory, we have for the canonical perpendicular
momentum of the charged particle

~P⊥ = ~p⊥ + q ~A (2.61)

where ~p⊥ is the relativistic three-momentum perpendicular to ~B, and ~A is the
magnetic potential ~B = ~∇× ~A. In this formulation

I1 =

∮

C

~P⊥ · d~l =
∮

C

~p⊥ · d~l + q

∮

C

~A · d~l =
∮

C

γm~v⊥ · d~l + q

∫

S

~B · d~S (2.62)

where we have used Stokes’ theorem and S is the circular area enclosed within
the curve C along which the contour integral is performed. Thus we have

I1 = 2πrcγmv⊥ + q

∫

S

~B · d~S (2.63)

wich covers the area enclosed by the circular motion of the particle with gyro-
radius rc.

If we now define d~l to point in the same direction as ~v⊥ and remember that
the Lorentz force needs to point inwards to keep the particle on its circular
motion, we see that ~B and d~S need to point in opposite directions for d~S and
d~l to be a right-handed system. So the second term in eq. 2.63 is negative and

I1 = 2πrcγmv⊥ − qBπr2c . (2.64)

With Ω = v⊥/r we also obtain

I1 = 2πr2cγmΩ− qBπr2c . (2.65)

Inserting Ω = qB/mγ (eq. 2.5)

I1 = 2πr2cqB − qBπr2c = qBπr2c , (2.66)

in other words, the first adiabatic invariant is the flux through the particle’s
orbital circle (Jackson, 1962).

If the magnetic field in the mirror changes with a frequency ω, then when
ω approaches Ω, the induced electric field will be in phase with the particles
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and accelerate them, In this case, the concept of adiabatic invariants breaks
down, our assumption that changes are slow compared with typical time scales
of the system is no longer valid. An example of this violation is the heating
of a plasma by cyclotron waves such as in an electron cyclotron resonance ion
source (ECRIS) or with ion-cyclotron waves in the solar corona.

Next let us consider the motion of the guiding center in a situation similar
to that sketched in Fig. 2.8. The particle bounces back and forth between two

Figure 2.8: Field configuration leading to the conservation of the second adia-
batic invariant. The particle (guiding center) bounces back and forth between
two magnetic mirrors.

magnetic mirrors which only move slowly. Neglecting drifts, we can consider
the motion of the guiding center only in a scalar magnetic field/potential – in
this picture the kinetic energy of the guiding center is converted to potential
energy when the particle is at rest at a position lm along the field line, where l
measures the length along a field line. Then the relevant canonical momentum
of the guiding center is PG‖ = mγVG‖ and the spatial coordinate is the length
along the field line, dl . Hence

I2 =

∮

PG‖dl = mγ

∮

VG‖dl. (2.67)

This quantity is called the second adiabatic invariant and is conserved during
bounce motion. (The Lorentz factor, γ may be taken infront of the integral
because v2 is not changed. In the absence of electric fields, time-constant
magnetic fields perform no work.)

If the mirrors approach and retract fom each other at a frequency ω which
approaches Ωbounce then, of course, our assumption of slow changes breaks down
and the second adiabatic invariant is not conserved. This situation arises in
the process of transit-time pumping or transit-time damping (see Sec. 12.2).

The derivation of the third adiabatic invariant is somewhat more compli-
cated. Consider particles bouncing back and forth between two mirrors in a
nearly axially symmetric field configuration such as that sketched in Fig. 2.9.
The bounce period T can be computed using

Tb = 2

∫ l∗m

lm

dl

VG‖
=

2

v

∫ l∗m

lm

dl

〈cosα〉τ
, (2.68)
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Figure 2.9: Field configuration leading to the conservation of the third adia-
batic invariant. Note that it is not completely symmetric about the ”symme-
try” axis (dash-dotted line), but nearly so. The bounce period between two
mirrors, Tb, is much shorter than the time required for the particle to move
around the symmetry axis.

where 〈cosα〉τ , the gyroperiod-averaged pitch-angle cosine, is itself a function
of l. lm and l∗m denote the two mirror points. We know, from our previous
considerations of the motion in a magnetic mirror, that

sin2 α =
B

B(lm)
, (2.69)

and hence

Tb =
2

v

∫ l∗m

lm

dl
√

1− B(l)
B(lm)

. (2.70)

From Hamiltonian mechanics we know that when the Hamiltonian is inde-
pendent of a certain coordinate qk or component thereof, then the conjugate
momentum is a conserved quantity because

dpk
dt

= −∂H
∂qk

(= 0 in this case). (2.71)

An axially symmetric field configuration is independent of the azimuth angle
ϕ and hence Pϕ, the momentum along the azimuthal direction, is a conserved
quantity. In a configuration that is only nearly axially symmetric

I3 =
1

Tb

∫ 2π

0

dϕPGϕ (2.72)

is a conserved quantity and is, of course, called the third adiabatic invariant.
PGϕ can easily be derived using the Hamiltonian formalism by PGϕ = ∂L/∂ϕ̇.
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In order to do so we need to find the Lagrangian, L of a particle in an electro-
magnetic field. The problem is that in the relativistic limit this is no longer
simply L = Ekin − Epot, but the Lagrangian needs to be derived differently.
We use the fact that

px =
∂L
∂ẋ

= mγẋ. (2.73)

This equation can be integrated to obtain the Lagrangian of a free particle

L = m

∫

γ(ẋ)ẋdẋ,

= m

∫
ẋ

√

1− (ẋ/c)2
dẋ,

= m

∫
cẋ′√
1− ẋ′2

cdẋ′, where ẋ = cẋ′

= −mc2
√
1− ẋ′2 +X(ẏ, ż), (2.74)

where the integration constant X(ẏ, ż) is an arbitrary function of ẏ and ż only.
Because it is arbitrary we may choose it to also be convenient and thus choose
X(ẏ, ż) = 0. Using the same procedure for the y and z components of the
momentum we find the Lagrangian for a free particle as

L = −mc2/γ. (2.75)

For an interacting particle we need to subtract the potential energy, V (~x, ~̇x, t)
to obtain

L = −mc2/γ − V (~x, ~̇x, t). (2.76)

The Lagrangian of a charged particle in a given field configuration is thus given
by

L = q
(

~A · ~v − φ
)

−mc2
√

1− v2/c2, (2.77)

where ~A is the vector potential ( ~B = ~∇× ~A) and φ is the scalar potential ( ~E =

∂t ~A − ∇φ). In an axially symmetric (cylindrically symmetric) configuration,
we have

L = q (Arṙ + Aϕrϕ̇+ Az ż − φ)−mc2
√

1− (ṙ2 + r2ϕ̇2 + ż2)/c2. (2.78)

Now we know from Hamiltonian mechanics the general relation that

PGϕ =
∂L
∂ϕ̇

= qAϕr + γmr2ϕ̇. (2.79)

Since this is a conserved quantity in the symmetric case, we may evaluate it
at any convenient location, e. g., at the time t0 when ϕ̇(t0) = 0. Then we have

1

2π
I3 = qr0Aϕ = q

1

2π

∮

d~s ~A, (2.80)
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where d~s = rdϕ~eϕ and the contour integral is along a circle with radius r0. This

is true because ~A is independent of ϕ. Using Stoke’s theorem and ~B = ~∇× ~A
we see that

q
1

2π

∮

d~s ~A = q
1

2π

∫

d~σ ~B = q
1

2π
Φ, (2.81)

where Φ is the magnetic flux through the circle described by the guiding center
around the “symmetry axis”. Φ will remain constant during the time needed
for the particle to drift around the whole field configuration. Or, in other
words, the particle will move in such a way as to conserve the flux, Φ, enclosed
in its orbit. This is shown in Fig. 2.10.

The importance of the third adiabatic invariant is not as large as that of
the two first ones because it is only conserved on very long time scales. In the
Earth’s magnetosphere hydromagnetic waves often destroy this nice property
because they are in phase with some particles and can accelerate their drift
motion. Nevertheless, it lies at the heart of the so-called ring current in the
magnetosphere.
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Figure 2.10: Motion of a proton in a dipolar magnetic field. The bounce
motions due to the magnetic mirror force and the equatorial drift can both be
seen. Because the drift along the equator depends on the sign of the particle’s
charge, it results in a current along the magnetic equator, the so-called ring
current.
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Obviously, adiabatic invariants aren’t always going to be conserved. Whe-
ther or not depends strongly on the temporal and spatial scales of field vari-
ations. If the time scale of variations is large compared to the largest of the
scales discussed above, the drift time scale, then all three adiabatic invariants
will be conserved. If the field changes faster than the time needed for sur-
rounding the Earth once but slower than the time required for one bounce,
then the third adiabatic invariant is not going to be conserved, but the other
two may well still be. If the system changes quicker than the bounce period
but more slowly than a gyro period, then neither the third nor the second
adiabatic invariants will be conserved, but the first will still be. Finally, in
a system which changes faster than the gyroperiod, the concept of adiabatic
invariants does not apply, nor will the guiding-center approximation.

Similar considerations hold true for spatial variations, as can be seen by
transforming them into the time domain. If the system changes on spatial
scales, L, smaller than the characteristic radius, ra, of the motion related to
the adiabatic invariant, then the latter will not be conserved. As an example
let us consider the case in which L/rc < 1. Using the definition of the gyro
radius, eq. 2.9, we have (neglecting parallel motion)

v⊥ = Ωrc. (2.82)

Dividing both sides by the spatial scale of the change (i.e., the gradient length
of the change) we see that

ω =
v⊥
L

= Ω
rc
L
> Ω, (2.83)

i.e., that the system changes faster than the gyroperiod, and, hence, the first
adiabatic is no more conserved. Similar considerations can be made for the
other two adiabatic invariants.

2.5 Mean Free Paths

Formally, every mean free path can be expressed as the inverse of the product of
the number density, n, of scattering centers and their scattering cross section,
σ,

λ =
1

nσ
. (2.84)

The difficulty lies not in this simple equation, but in the definition of what
scatters and, sometimes, in the derivation of the scattering cross section. For
neutral particles, this is relatively simple. The scattering occurs between neu-
tral particles whose density, nn, is well defined. Their scattering cross section,
σn ≈ 10−19m2, is an empirical number which includes several complicated pro-
cesses such as resonances in the electron shells, etc. The crucial point here
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is that neutral particle interactions are short ranged, and we consider their
collisions just like those of billard balls.

In the case of charged particles in a fully ionized plasma, the situation is
more complicated. The long range of the Coulomb force means that particles
will scatter even when they are separated by distances much larger than their
atomic (ionic) sizes, and that they tend to scatter by smaller angles. Fur-
thermore, in a dense plasma, a given particle will be shielded by the other
plasma particles from a particle that potentially would scatter with it. This
is accounted for by introducing the Debye sphere within which the Coulomb
potential of the charge is considerer to be confined. However, this does not
mean that we can now use σ = πλ2D as scattering cross section. Particles
with higher energies can penetrate deeper into the exponential Debye-shielded
potential than low-energy particles. Nevertheless, they will still have a larger
probability of scattering by a small angle than by a large angle. See Sec. 8.2.2
for a more detailed treatment.

To calculate the Coulomb scattering cross section, σC , for an electron to
scatter on an ion, we make use of the following simplifying assumptions. The
force felt by the electron at its closest approach to the ion is approximately

FC = − e2

4πε0d2c
, (2.85)

where dc is the impact parameter. The electron feels this force for a time
τ ≈ dc/ve, where ve is the electron’s speed. Thus, the change in momentum,
|∆(meve)|, is approximately

|∆(meve)| ≈ |Fcτ | =
e2

4πε0vedc
. (2.86)

We now consider the change in momentum for a large deflection angle, γ ≈ 90◦.
It is then of the same order as the particle’s momentum itself, i.e., |∆(me·ve)| ≈
meve. We can insert this very rough approximation into eq. 2.86 to obtain an
estimate for the impact parameter, dc,

dc ≈
e2

4πε0mev2e
(2.87)

which leads directly to the scattering cross section

σc = πd2c ≈
e4

16πε20m
2
e 〈ve〉4

(2.88)

where we have replaced the electron speed with the electron populations aver-
age speed, 〈ve〉.

The collision frequency between electrons and ions is then simply

νei = neσc 〈ve〉 ≈
nee

4

16πε20m
2
e 〈ve〉3

. (2.89)
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Using the expression for the average thermal energy of an electron, kBTe =
1
2
me 〈ve〉2, and using the expression for the plasma frequency, ωe =

√

(nee2)/meε0),
we can rewrite the collision frequency with macroscopic quantities,

νei ≈
√
2ω4

pe

64πne

(
kBTe
me

)−3/2

. (2.90)

The mean free path of electrons in a plasma is given by

λe =
〈ve〉
νei

=
1

neσc
. (2.91)

Using the Debye-length, λD
.
=
√

ε0/nee2
√
kBTe, and eq. 2.88 we find that

λe = 64πneλ
4
D. (2.92)

The number of electrons within a Debye-sphere is

N = ne
4π

3
λ3D

.
=

1

3
Λ =⇒ Λ = ne4πλ

3
D (2.93)

where Λ is within a factor 4π the so-called plasma parameter. It is the expo-
nential of the so-called Coulomb logarithm, lnΛ. Thus

λe ≈ 16ΛλD, (2.94)

which implies that the electron mean free path is significantly longer than a
Debye radius.

Let us illustrate these points by considering the interplanetary medium. At
one astronomical unit (1 AU) from the Sun, we have mean electron densities
of roughly 5 per cm3 at a temperature of 100’000 K, we have a mean Debye
radius of about 10 m. Then, the mean free path at 1 AU is about (eq. 2.92),

λe = 64π · 5× 106 × 104 ≈ 200× 5× 1010 = 1013m (2.95)

which is considerably longer than the distance from Sun to Earth ( 1 AU ≈
1.5·1011m) and nearly the size of the heliosphere. Nevertheless, we do measure
effects of Coulomb collisions in the solar wind (see next chapter).

There is a peculiar point to be mentioned here. The solar wind can be
successfully modelled with MHD methods. The theory of MHD requires that
the mean free path of the fluid particles be considerably shorter than the di-
mensions of the system. Where’s the problem? Well, as we just saw, the mean
free path is much larger than a typical scale of the system (the heliosphere),
and so the assumptions made by MHD should be violated. Nevertheless, it
works remarkably well. How come? The point here is that there are other
“collisions” which act to equilibrate the particle distributions, thus driving the
system into a state in which it can be described as a magnetized fluid. The
“collisions” are events where a particle interacts resonantly with one of the
many kinds of waves which are ubiquitous in the solar system plasma.
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2.6 Pitch-Angle Scattering as a Example of

Wave-Particle Interactions

As an example of a particle scattering off a wave, we consider the important
phenomenon of pitch-angle scattering. As already mentioned in the discussion
of Fig. 2.1, a particle’s velocity can be split into a part parallel and a part
perpendicular to the ambient magnetic field, ~B0. When a wave passes a par-
ticle, the latter sees the wave at a Doppler-shifted frequency. When this lies
in the range of the particle’s gyro-frequency, the particle can sense the wave’s
electromagnetic field and can resonantly interact with it. The condition for
such a gyro-resonance between wave and particle is

ω − ~k‖ · ~V‖ = nΩ, (2.96)

where ω and ~k are the wave frequency and wave vector. n is an integer,
= 0,±1,±2, . . ., and the case n = 0 is called Landau resonance. When condi-
tion 2.96 is satisfied, particle and wave can exchange energy and momentum.
Figure 2.11 shows the force felt by the particle. Its motion and the wave’s
magnetic field, ~Bω, lead to a Lorentz force which can increase or decrease the
particle’s parallel and perpendicular velocity components depending on the
phase of the wave relative to the particle’s motion. The situation shown in
Fig. 2.11a would lead to a decrease in pitch angle and increase in v‖. If the

phase between the wave’s ~Bω and the particle’s motion were shifted by π, ~Bω

would point downwards, an the Lorentz force would point in the opposite di-
rection. Figure 2.11b shows the ineraction with the parallel motion of the
particle. The Lorentz force acts to slow down the gyration of the particle.
Again, if the relative phase between particle and wave were shifted by π, the
opposite force would be felt by the particle and it would be accelerated in its
gyration. Obviously, such wave-particle interaction can change the particles
momentum and energy. Because the pitch angle is given by the ratio of per-
pendicular to parallel speeds, it too, can be changed in such an interaction.
Resonant wave-particle interactions only occur on a short time scale, small in
comparison with the particle’s gyroperiod. This means that the first adiatic
invariant, the magnetic moment, ~µ, is not conserved. Thus, in the inertial
frame, the particle’s energy is not conserved. However, it is conserved in the
rest frame of the wave. This can be seen by the following argument (see, e.g.,
Tsurutani and Lakhina, 1997, which we have closely followed.). Let us assume
that the particle gains a quantum of energy ∆E = h̄ω where ω is the wave
frequency. Then its parallel momentum will increase by

m∆V‖ = h̄k‖ =
k‖
ω
∆E. (2.97)

As the energy gain is likely to be small, we can write it as

∆E = m(V‖∆V‖ + V⊥∆V⊥). (2.98)
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~B0

~Bω

~v⊥
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Figure 2.11: Interaction between a positively charged ion and a wave. a) shows
the interaction with the ~v⊥ velocity component, and b) shows the interaction
with the ~v‖ component. The Lorentz force due to the particles motion and the

wave field, ~Bω, can change the particles momentum (and pitch angle). After
Tsurutani and Lakhina (1997).

Inverting eq. 2.97 for ∆E we obtain

∆E =
mω

k‖
∆V‖ = mVph∆V‖, (2.99)

where Vph is the wave phase speed. Subtracting eq. 2.99 from eq. 2.98 and
integrating (using the substitution ∆V −→ dV ) we have

1

2
mV 2

⊥ +
1

2
m
(
V‖ − Vph

)2
= const. (2.100)

which shows that the particle’s energy is conserved in the wave frame (because
the integrand has to vanish). If the wave transfers an energy ∆E = h̄ω to the
particle, the particle’s parallel energy is increased and the wave phase speed is
decreased accordingly.

Similar considerations can be made for particles scattering with the elec-
tric component of resonant electromagnetic or electrostatic waves. This is
illustrated in Fig. 2.12.

Scattering off waves appears to be much more frequent in the heliosphere
than Coulomb scattering. We will investigate wave-particle interactions in
some more detail in the following chapter on the solar wind. Heating of particle
distributions by ion-cyclotron waves appears to be a significant energy source
to heat and accelerate the solar wind.
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~B0

~v⊥

~E

Figure 2.12: Interaction between a positively charged ion and the electric com-
ponent of a resonant electromagnetic or electrostatic wave. After Tsurutani
and Lakhina (1997).



Chapter 3

Waves in Plasmas

3.1 Introduction

The strength of the Coulomb force as well as its long range entail that plasmas
are highly sensitive to perturbations. The individual particles (electrons and
ions) which constitute a plasma are constantly moving due to their thermal
motion. This combination can give rise to an incredible richness in organized
behavior of the plasma which we call collective behavior or, in some cases,
waves. Despite this sensitivity, a plasma does not exhibit random waves. Two
conditions must be met by a disturbance to generate waves:

• The disturbance must be a solution of the equations of the plasma. If I
disturb a plasma at an extremely high frequency, nothing will happen.
Similarly, no waves will be generated if I move it very slowly. Only a
limited and discrete number of modes will be able to exist in a plasma.

• What is a wave? We will speak of a wave only when its amplitude exceeds
that of the always-present thermal fluctuations. This tells us that the
disturbance needs to be large enough to affect the plasma more than the
thermal fluctuations.

We will begin this chapter with a discussion of waves in a unmagnetized
plasma and etc., as we see what happens For most of this chapter we will
assume that disturbances are large, i.e., that they can lead to waves and that
the wave amplitudes are larger than the thermal fluctuations. This can also be
reworded as assuming a cold plasma. Nevertheless, we will also assume that
the waves and disturbances are small enough that we can treat them linearly,
that is that we can treat disturbances as a superposition of plane waves. A
plane wave can be written in the form using its Fourier components,

~A(~k, ω) exp(i~k · ~x− iωt). (3.1)

33
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A

x
δx δx

δE

Figure 3.1: The displacement of the electrons by a distance δx results in a
restoring electric field δE which acts on the the electrons and pulls them back.
If there is insufficient friction (e.g., by collisions), the electrons will overshoot,
and plasma oscillations set in.

This allows us to recall the definitions of the phase velocity, ~vph and group
velocity, ~vgr of the wave,

~vph = ω~k/k2, (3.2)

~vgr = ∂ω/∂~k, (3.3)

where the phase velocity points parallel to the wave vector and thus in the same
direction as the wave propagates. The group velocity does not necessarily point
in the same direction but in the direction in which energy is transported by
the wave.

We will largely follow the three books by Baumjohann and Treumann
(1997), Chen (1984), and Goedbloed and Poedts (2004).

3.2 Waves in an Unmagnetized Plasma

Consider a charge-neutral plasma which is confined in a volume V = A·x where
A is the cross section and x some length perpendicular to it (see Fig. 3.1).
Because ions are much heavier than electrons, they are often considered to be
immobile. Consider now a sudden displacement of all electrons in the plasma
by a distance δx which is fast enough that the ions can’t follow them. This
displacement will set up a restoring electric field, δE, which points from ions
to electrons and exerts a force F = −eδE on every electron. Of course the
ions also feel this force, but in the other direction. Because they are much
heavier, the acceleration felt by them is much smaller. Thus, the electrons will
be forced back to conserve charge neutrality. If their motion is not damped,



3.2. WAVES IN AN UNMAGNETIZED PLASMA 35

e.g., by collisions, they will overshoot and the situation will be reversed, with
the electric field pulling them back in the other direction. This sets up plasma
oscillations at a frequency known as the plasma frequency. Let us consider the
magnitude of the electric field. It is given by Poisson’s equation

~∇ · ~E = ρ/ε0 = (e/ε0)(Zni − ne), (3.4)

where ρ is the charge density, and we have introduced the ion and electron
number densities, ni, and ne, respectively. In this one-dimensional case, we
may write

∂E/∂x = (e/ε0) (Zni−ne) −→ ∂E = (e/ε0) (Zni−ne) ∂x −→ δE = (e/ε0) (Zni−ne)δx.
(3.5)

The equation of motion for an electron is then

me
∂2δx

∂t2
= −(e2/ε0) (Zni − ne)δx. (3.6)

But this is exactly the equation for a harmonic oscillator, the force is propor-
tional to the displacement, and we immediately see that we need to expect a
harmonic oscillation with frequency

ωpe = ±
√

ne2

meε0
, (3.7)

where n is the undisturbed number density of electrons.
We will now rederive this result in a different and somewhat more precise

manner to illustrate an important method, in which we make use of the small-
ness of perturbations by linearizing the fluid equations of the plasma. The
electron continuity equation is

∂ne

∂t
+ ~∇ · (ne~ve) = 0, (3.8)

and the equation of motion (or momentum conservation) is

mene

(
∂~ve
∂t

+
(

~ve · ~∇
)

~ve

)

= −ene
~E. (3.9)

Together with Poisson’s equation, eq. 3.4, these equations describe the unmag-
netized plasma we are studying. Next, we split the quantities which appear in
these equations into an equilibrium part indexed with a subscript 0, i.e., n0,
E0, and v0, and a perturbed part indexed with a subsript 1, i.e.,

n = n0 + n1, ~ve = ~v0 + ~v1, ~E = ~E0 + ~E1. (3.10)
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By definition, the time average of the perturbed values vanishes, and the time
average of the original quantities is just n0, ~v0, and ~E0. The equilibrium values
are stationary and homogeneous (i.e., without oscillations), so

~∇n0 = ~v0 = ~E0 = 0, (3.11)

∂n0

∂t
=

∂~v0
∂t

=
∂ ~E0

∂t
= 0. (3.12)

We now rewrite the momentum conservation equation (eq. of motion, eq. 3.9)
in these quantities and make use of the relations 3.11 and 3.12:

mene

(
∂~ve
∂t

+
(

~ve · ~∇
)

~ve

)

= −ene
~E,

me

(
∂(~v0 + ~v1)

∂t
+
(

(~v0 + ~v1) · ~∇
)

(~v0 + ~v1)

)

= −e( ~E0 + ~E1),

me

(
∂~v1
∂t

+
(

~v1 · ~∇
)

~v1

)

= −e ~E1,

me

(
∂~v1
∂t

+ 0

)

= −e ~E1, (3.13)

where in the last step we have neglected the quadratic term. In other words,
we have linearized the equation of motion in the perturbed quantities.
We linearize the continuity equation in a similar manner,

∂ne

∂t
+ ~∇ · (ne~ve) = 0,

∂(n0 + n1)

∂t
+ ~∇ · ((n0 + n1)(~v0 + ~v1)) = 0,

∂n1

∂t
+ ~∇ · (n0~v0 + n0~v1 + n1~v0 + n1~v1) = 0,

∂n1

∂t
+ (~∇n0)~v0 + (n0

~∇) · ~v0 + . . .+ (~∇n1)~v1 + n1(~∇ · ~v1) = 0,

∂n1

∂t
+ n0(~∇ · ~v1) + ~v1 · (~∇n0) = 0,

∂n1

∂t
+ n0(~∇ · ~v1) = 0. (3.14)

In equilibrium, we have n0i = n0e = n0, and because the ions don’t move, we
also have ni1 = 0, so Poisson’s equation is now

ε0~∇ · ~E1 = −en1. (3.15)

In a next step, we decompose the oscillating quantities into their Fourier



3.2. WAVES IN AN UNMAGNETIZED PLASMA 37

components, similar to eq. 3.1,

~v1 = v1 exp
(

i(~k · ~x− ωt)
)

x̂, (3.16)

n1 = n1 exp
(

i(~k · ~x− ωt)
)

, (3.17)

~E1 = E1 exp
(

i(~k · ~x− ωt)
)

x̂. (3.18)

In this notation the time derivative can always be replaced by −iω, and the
gradient by i~k,

∂

∂t
−→ −iω, ~∇ −→ i~k, (3.19)

and equations 3.13 to 3.15 then become

−imeωv1 = −eE1, (3.20)

−iωn1 = −n0ikv1, (3.21)

ikε0E1 = −en1. (3.22)

We solve eq. 3.22 for E1, insert in eq. 3.20, in which we replace n1 using eq. 3.21
to obtain

−imeωv1 = −e −e
ikε0

· −n0ikv1
−iω = −in0e

2

ε0ω
v1. (3.23)

We are now nearly at the end inasmuch as we have found an equation for
ω. Afterall, we are interested in the situation where v1 does not vanish, and,
hence, we can divide eq. 3.23 by v1 to obtain the same expression as eq. 3.7
for the plasma frequency,

ωpe = ±
√

n0e2

meε0
. (3.24)

Note that plasma oscillations do not propagate, the group velocity, ~vgr =

∂ω/∂~k vanishes because the plasma frequency does not depend on the wave

vector, ~k. The phase velocity, ~vph = ω~k/k2, changes with every oscillation

because the wave vector, ~k points in opposite directions every half oscillation.
This situation is not entirely realistic. When they are displaced, some of

the electrons can propagate further into the unperturbed plasma because of
their higher thermal velocity. Thus, a pressure gradient,

~∇pe = γkBTe~∇ne = 3kBTe~∇(n0 + n1) = 3kBTe
∂n1

∂x
x̂, (3.25)

will build up, which will influence the motion of the other electrons. In other
words, this pressure gradient needs to be included in the equation of motion
for the electrons. Already linearized, this now reads

men0
∂v1
∂t

= −en0E1 − 3kBTe
∂n1

∂x
. (3.26)
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Again we write the fluctuating quantities in their Fourier components and
transform this partial differential equation to an analytic equation,

−imeωn0v1 = −en0E1 − 3kBTeikn1. (3.27)

Now Poisson’s equation and the continuity equation are both not altered by
the introduction of this additional pressure term, so E1 and n1 are still given
by eqs. 3.22 and 3.21, and so we end up with

−imeωn0v1 =

{

en0

( −e
ikε0

)

+ 3kBTeik

}
n0ik

iω
v1,

ω2v1 =

(
n0e

2

ε0me

+
3kBTe
m

k2
)

v1,

ω = ±
√

ω2
pe +

3

2
k2v2th, (3.28)

where v2th = 2kBTe/m. These oscillations now propagate and are called Lang-
muir waves. These waves only occur because of the finite temperature of the
electrons.

3.3 Waves in Magnetized Plasmas

Of course, there are many more phenomena in unmagnetized plasmas than the
two just treated, plasma oscillations and Langmuir waves. Nevertheless, we
must go on and begin studying wave phenomena in magnetized plasmas. After
all, the heliospheric plasma is magnetized. Again we will restrict ourselves to
a subset of the rich phenomenology and consider only MHD waves. We will
closely follow Goedbloed and Poedts (2004).

But before we begin with MHD equations, we will illustrate the proce-
dure once more, this time with ordinary sound waves. The equations of gas
dynamics (which are also included in MHD) are:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (3.29)

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)

+ ~∇p = 0, (3.30)

∂p

∂t
+ ~v · ~∇p+ γp~∇ · ~v = 0, (3.31)

where ρ is mass density, p pressure, and γ = cp/cv is the ratio of specific heats.
We now need to linearize these equations about a time independent, infinite,
and homogeneous background. This implies that ∂/∂t = 0 and ~∇· = 0 for these
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background quantitites, indexed by 0, while we write the small perturbations
with an index 1. Thus, we recover the linearized equations of gas dynamics,

(
∂

∂t
+ ~v0 · ~∇

)

~v1 + ρ0~∇ · ~v1 = 0, (3.32)

ρ0

(
∂

∂t
+ ~v0 · ~∇

)

~v1 + ~∇p1 = 0, (3.33)

(
∂

∂t
+ ~v0 · ~∇

)

p1 + γp0~∇ · ~v1 = 0. (3.34)

We wish to find an equation for ~v1, i.e., the perturbation in velocity, as this
will give us the expression for wave propagation, as it did in the preceding
section. The first in these equations is decoupled from the other two and
we can disregard it for the time being. We can solve the other two by first
applying the operator ∂/∂t + ~v0 · ~∇ to the first (eq. 3.33 and the operator ~∇
to the second (eq. 3.34). With the latter, we can eliminate p1 from the former,
and we obtain (

∂

∂t
+ ~v0 · ~∇

)2

~v1 −
γp0
ρ0

~∇~∇ · ~v1 = 0. (3.35)

The factor γp0/ρ0 infront of the second term has dimensions of speed squared,
it is in fact nothing else but the square of the speed of sound, cs =

√

γp0/ρ0.
Again, we write the fluctuating quantity, here ~v1 as a superposition of plane
waves,

~v1(~r, t) =
∑

~k

~̂v~ke
i(~k·~r−ωt). (3.36)

Inserting in the wave equation, eq. 3.35, we can replace all derivatives by the
corresponding algebraic factors, and we obtain

{(

ω + ~k · ~v0
)2

I− c2s
~k~k

}

· ~v1 = 0. (3.37)

Let us transform into a frame of reference comoving with the gas (i.e., ~v0 = 0).
Then we find that, in this simple system, there is no preferred direction. So
now we can assume that the waves will propagate, e.g., in the z direction,
~k = k~̂z. In this case, eqs. 3.37 reduce to the following set of equations,

ω2v̂x = 0,

ω2v̂y = 0, (3.38)

(ω2 − k2c2)v̂z = 0,

which have the physically relevant solutions

ω = ±kc; where v̂x = v̂y = 0, and v̂z is arbitrary. (3.39)
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These two solutions represent plane sound waves travelling to the right (+)

and to the left (−). They are compressible because ~∇·~v1 6= 0 and longitudinal

because ~v1 ‖ ~k. The other solutions ω2 = 0 for arbitrary v̂x and v̂y and
v̂z = 0 are not interesting from a physics point of view as they only describe
time-independent incompressible transverse translations.

We will now proceed to derive three kinds of MHD waves, Alfvén waves,
and the fast and slow magnetosonic waves from the equations of MHD in the
same way as shown above. The equations of MHD are given by

∂ρ

∂t
+ ~∇ · (ρ~v) = 0, (3.40)

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)

+ ~∇p− 1

µ0

(

~∇× ~B
)

× ~B = 0, (3.41)

∂e

∂t
+ ~v · ~∇e+ (γ − 1)e~∇ · ~v = 0, (3.42)

∂ ~B

∂t
− ~∇×

(

~v × ~B
)

= 0, ~∇ · ~B = 0, (3.43)

where e = e0 = p0/((γ − 1)ρ0) is the internal energy of the plasma. We will
linearize these equations shortly, but before that, we rewrite the terms with
vector products according to

−
(

~∇× ~B
)

× ~B =
(

~∇ ~B
)

· ~B − ~B · ~∇ ~B, (3.44)

−~∇×
(

~v × ~B
)

= − ~B · ~∇~v + ~B~∇ · ~v + ~v · ~∇ ~B, (3.45)

which leads to the following set of equations:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0,(3.46)

ρ

(
∂~v

∂t
+ ~v · ~∇~v

)

+ (γ − 1)~∇(ρe) +
1

µ0

(

~∇ ~B
)

· ~B − 1

µ0

~B · ~∇ ~B = 0,(3.47)

∂e

∂t
+ ~v · ~∇e+ (γ − 1)e~∇ · ~v = 0,(3.48)

∂ ~B

∂t
− ~B · ~∇~v + ~B~∇ · ~v + ~v · ~∇ ~B = 0,(3.49)

and, of course, ~∇ · ~B = 0. We now linearize these equations with the same
assumption as above, namely that ρ0, ~B0, and e0 are constants, i.e., constant
in time and homogeneous in space. Thus, their time derivatives and gradients
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vanish. In this fashion, we obtain

∂ρ1
∂t

+ ρ0~∇ · ~v1 = 0,(3.50)

ρ0
∂~v1
∂t

+ (γ − 1)
(

e0~∇ρ1 + ρ0~∇e1
)

+
1

µ0

(~∇ ~B1) · ~B0 −
1

µ0

~B0 · ~∇ ~B1 = 0,(3.51)

∂e1
∂t

+ (γ − 1)e0~∇ · ~v1 = 0,(3.52)

∂ ~B1

∂t
− ~B0

~∇ · ~v1 + ~B0 · ~∇ · ~v1 = 0,(3.53)

To reduce the amount of writing, we introduce the notation

~b
.
=

~B0√
µ0ρ0

. (3.54)

With all of this now prepared, we wish to derive a wave equation using the
momentum conservation equation, eq. 3.51. We take an extra time derivative
to obtain

∂2~v1
∂t2

+ (γ − 1)

(

e0/ρ0~∇
∂ρ1
∂t

+ ~∇∂e1
∂t

)

+
∂

∂t
(~∇ ~B1) ·~b−

∂

∂t
~b · ~∇ ~B1 = 0. (3.55)

We now wish to replace all other fluctuating quantities except v1 with ex-
pressions involving v1. We can achieve this by applying the operator ~∇ to
eqs. 3.50, 3.52, and 3.53. We then insert the resulting expressions for the
other fluctuating quantities in eq. 3.55 to obtain

∂2~v1
∂t2

−
{

(~b · ~∇)2I+ (b2 + c2)~∇~∇−~b · ~∇(~∇~b+~b~∇)
}

· ~v1 = 0. (3.56)

For vanishing magnetic field, ~b = 0, we recover the quation for the sound
wave, eq. 3.37, as we would expect to happen. Again inserting the plane wave
solutions, we get the algebraic eigenvalue equation,

{[

ω2 − (~k ·~b)2
]

I− (b2 + c2)~k~k + ~k ·~b(~k~b+~b~k)
}

· ~v1 = 0. (3.57)

As opposed to the case of pure sound waves, where there was no preferred
direction, we now do have one, i.e., the direction of the magnetic field, which
we define to be the z direction. We can now decompose eq. 3.57 into its
components,





ω2 − k2⊥(b
2 + c2)− k2‖b

2 0 −k⊥k‖c2
0 ω2 − k2‖b

2 0

−k⊥k‖c2 0 ω2 − k2‖c
2









v̂x
v̂y
v̂z



 = 0. (3.58)
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This eigenvalue equation has a solution if the determinant of the matrix on the
left-hand side vanishes. Nevertheless, we can already see one solution. The
central matrix element will occur as a common multiplicative factor in the
determinant. It describes a wave which propagates parallel to the field with a
frequency

ω = ±ωA = ±k‖vA .
= ±k‖

√

B2
0

µ0ρ0
. (3.59)

We have retrieved the famous Alfvén waves. They propagate to the right (along

the direction in which ~B0 is pointing, i.e., positive) or to the left (negative sign,

pointing opposite to ~B0). The velocity perturbation points in the ±y direction,
as does the magnetic perturbation, the wave is a transverse wave. The electric
field points in the ±x direction. The group velocity, vgr = ∂ω/∂k = vA,
points along the wave vector, and is constant. Thus, Alfvén waves show no
dispersion. They are transverse oscillations of the magnetic field. A small
velocity perturbation ~v1, perpendicular to ~B0 results in a tension force on the
field line which acts to restore the velocity perturbation. Because there is no
damping term, it will overshoot and the field line oscillates about ~B0 in a frame
comoving with the wave.

The determinant of eq. 3.58 is easily calculated to be

det = (ω2 − k2‖b
2)
[
ω4 − k2(b2 + c2)ω2 + k2‖k

2b2c2
]
= 0, (3.60)

where k2 = k2‖+k
2
perp. There are two other solutions to the dispersion relation,

eq. 3.58 which fall out of eq. 3.60. The solution to the other (non-Alfvénic)
factor of the determinant is given by

ω2
ms =

k2

2

{

(v2A + c2)±
[

(v2A − c2)2 + 4v2Ac
2k

2
⊥
k2

]1/2
}

. (3.61)

These oscillations are two magnetosonic waves, the fast (positive sign infront
of the square bracket) and slow modes.

3.4 The General Dispersion Relation

The relationship between wave frequency and wave vector is called a dispersion
relation. It differs for the various different waves present in a plasma. It is
rather tedious to derive them all from similar considerations as we just used.
A plasma allows for many different waves, and this can get rather involved.
Moreover, one is then never sure that one has found all possible waves in the
plasma under investigation. In the following, we will derive the most general
dispersion relation for a magnetized plasma. This can, in principle then be
solved, and will yield all possible waves for a given description of the plasma.
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We do this by first deriving the general wave equation, and then deriving the
general dispersion relation. We will closely follow Baumjohann and Treumann
(1997).

3.4.1 The general wave equation

Consider a plasma which is subjected to some time- and spatially varying
external currents and charge distributions, ~jex and ρex. It will be goverend by
some selfconsistent currents and charge densities, ~j and ρ, and electric and
magnetic fields which will transport the information about the disturbances.
This system is goverend by Maxwell’s equations:

~∇× ~B = ε0µ0
∂ ~E

∂t
+ µ0

(

~j +~jex

)

, (3.62)

~∇× ~E = −∂
~B

∂t
, (3.63)

~∇ · ~B = 0, (3.64)

~∇ · ~E =
1

ε0
(ρ+ ρex) . (3.65)

As usual, we can derive the wave equation by taking the time derivative of the
first equation,

∂t

(

~∇× ~B
)

= ε0µ0
∂2 ~E

∂t2
+ µ0

(

∂t~j + ∂t~jex

)

,

and substituting ∂t ~B with eq. 3.63. Using ~∇ × ~∇ × . . . = ~∇(~∇ · . . .) − ∆ . . .
(“rot rot = grad div - Laplace”), we obtain

∆ ~E − ~∇(~∇ · ~E)− ε0µ0
∂2 ~E

∂t2
= µ0

(

∂t~j + ∂t~jex

)

. (3.66)

The selfconsistent current reacts to the electric fields according to Ohm’s law,

~j(~x, t) =

∫

d3x′
∫ t

−∞
dt′σ(~x, ~x′, t, t′) · ~E(~x′, t′). (3.67)

The time integral expreses causality - the entire history of the plasma con-
tributes to the exact behaviour of the current. In fact, even this complicated
expression is a linearized version which is valid for small perturbations in the
fields. The quantity σ is the conductivity tensor of the plasma, and eq. 3.67
closes the above system of equations if σ is known. One can determine σ if
one knows the plasma, i.e., if one has a plasma model which allows one to
derive an expression for σ. In other words, the plasma model determines the
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conductivity tensor, and then we can derive the full spectrum of waves allowed
in that plasma.

Let us now assume that the plasma responds linearly to perturbations in
the fields or external currents or charge densities. In that case the conductivity
tensor depends only on the relative positions and timing, i.e., σ(~x−~x0, t− t0).
Writing

~E = ~E0 + δ ~E, where ~E0 = 0

we then have

∆δ ~E − ~∇(~∇ · δ ~E)− ε0µ0
∂2δ ~E

∂t2
= µ0∂t~j. (3.68)

The left-hand side describes the purely electromagnetic response of the plasma
to the fluctuating current density on the right-hand side. The left-hand side
(response) is independent of the medium! The influence and response of the
medium is fully described by the right-hand side, by the fluctuating current
density which itself responds to the fluctuating field according to Ohm’s law,

~j(~x, t) =

∫

d3x′
∫ t

−∞
dtσ(~x− ~x′, t− t′) · δ ~E. (3.69)

Eq. 3.68 is the general wave equation. It is supplemented by Ohm’s law
(eq. 3.69) which requires a detailed model of the plasma so it can be calculated.

3.4.2 The general dispersion relation

We now derive the general dispersion relation. We again write the field fluc-
tuations as a superposition of plane waves

δ ~E(ω,~k) = δ ~E0(ω,~k) exp(i~k · ~x− iωt).

As usual, this will transfom the left-hand side of the wave equation into an
algebraic equation. What about the right-hand side? The convolution theorem
states that the Fourier transform of this convolution integral can be replaced
by the product of the Fourier transforms of the two individual factors, σ and
δ ~E. This simplifies the equation considerably, because it separates σ from δ ~E
(in Fourier space). Thus, we can separate the fluctuating field to obtain

[(

k2 − ω2

c2

)

1− ~k~k − iωµ0σ(ω,~k)

]

· δ ~E0(ω,~k) = 0. (3.70)

This is already close to the dispersion relation. To be valid for all fluctuating
fields, the determinant of the square brackets must vanish. The fields and
conductivity tensor satisfy

δ ~E∗(~k, ω) = δ ~E(−~k,−ω), (3.71)

σ∗(~k, ω) = σ(−~k,−ω), (3.72)
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assuring real (non-imaginary) field amplitudes. The dispersion relation is then

Det

[(

k2 − ω2

c2

)

1− ~k~k − iωµ0σ(ω,~k)

]

= 0. (3.73)

It is often written with the dielectric tensor, ǫ, with which

δ~j(ω,~k) = −iωε0
[

ǫ(ω,~k)− 1
]

· δ ~E(ω,~k).

Thus, we also have

ǫ(ω,~k) = 1+
i

ωε0
σ(ω,~k). (3.74)

With this, we can write the general dispersion relation in the customary form,

Det

[

k2c2

ω2

(
~k~k

k2
− 1

)

+ ǫ(ω,~k)

]

= 0. (3.75)

This is the general dispersion relation for any active medium such as a plasma.
The solutions to this equation describe the (linear) waves present in the medium.

Their frequency is ω = ω(~k). There are not infinitely many solutions, but
rather, this is an eigenvalue problem and has a finite number of solutions.
Their exact behaviour depends on the model used to describe the plasma via
its dielectric tensor ǫ.

3.4.3 Application: Cold Electron Plasma Waves

As an application of the procedure just outlined, we derive the dispersion
relation for a cold magnetized plasma with a constant background field, ~B0.
This means that only a linear term δ~v × ~B0 in the Lorentz force needs to be
retained. We can rewrite this term using the electron gyrofrequency, eq. 2.9,
~ωge = e ~B0/me, and obtain the system of equations of motion for the electrons,

dδ~v‖
dt

= − e

me

δ ~E‖,

dδ~v⊥
dt

= − e

me

δ ~E⊥ + ~ωge × δ~v⊥.

We differentiate the second equation with respect to time, using the vector
relation ~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b),

∂2t δ~v⊥ + ω2
geδ~v⊥ = − e

me

(

∂tδ ~E + ~ωge × δ ~E⊥

)

.

This is an oscillator equation, as we will see shortly. What we want to do now
is obtain an expression for the conductivity tensor, σ(ω,~k). Since we have,
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by assumption, a cold plasma, there are no pressure gradients working on the
plasma. The ensemble of electrons all move at exactly the same speed caused
by the electric field, and the current density, defined by this motion is

δ~j = −en0δ~v = σ · δ ~E.

Inserting a plane wave Ansatz for the electric field, and a similar oscillatory
Ansatz for the velocity fluctuations, we obtain

−ω2δ~v⊥ + ω2
⊥δ~v≥ = − e

me

(

−iωδ ~E⊥ + ~ωge × δ ~E⊥

)

,

which we can solve for δ~v⊥,

δ~v⊥ = − e

me

1

ω2
ge − ω2

(

−iωδ ~E⊥ + ~ωge × δ ~E⊥

)

= − 1

en0

σ · δ ~E⊥. (3.76)

After a little bit of maths, and using the expression for the electron plasma
frequency,

ωpe =

√

ne2

mε0
,

we obtain an expression for the conductivity tensor,

σ(ω) = ε0ω
2
pe






iω
ω2−ω2

ge

ωge

ω2−ω2
ge

0
−ωge

ω2−ω2
ge

iω
ω2−ω2

ge
0

0 0 i
ω




 , (3.77)

where the last line is due to the motion of the electrons parallel to the magnetic
field (which is unaffectied by it). In other words, the conductivity tensor is
independent of the wave vector and depends only on the wave frequency. It
is now straightforward to derive the dielectric tensor, ǫ, of the cold plasma
according to eq. 3.74.

ǫcold(ω) =







1 +
iω2

pe

ω2
ge−ω2 − iωge

ω

ω2
pe

ω2
ge−ω2 0

iωge

ω

ω2
pe

ω2
ge−ω2 1 +

ω2
pe

ω2
ge−ω2 0

0 0 1− ω2
pe

ω2






, (3.78)

which can be inserted into eq.3.75 to give the cold electron dispersion relation

Det









k2c2

ω2

(

1−
~k~k

k2

)

︸ ︷︷ ︸

electromagnetic

+ ǫcold(ω)
︸ ︷︷ ︸

plasma









= 0. (3.79)
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Because the wave vector does not appear in the dielectric tensor, we find that
the only electrostatic variations in the cold electron plasma are pure oscillations
which do not propagate, just as we found the plasma oillations in the plasma
with frequency ω = ωpe. The only propagating waves are electromagnetic in
nature.

3.5 Landau Damping

Sofar, we have studied cold plasmas in which the thermal distribution of the
ions and electrons did not play an appreciable role. This is a valid approx-
imation if the electrons and ions are much slower than the phase velocities,
ωpe/k, of plasma waves in the plasma. But what happens if the wave vector,
k, is large? Then the phase velocity can become arbitrarily small, even smaller
than the thermal velocity of the particles constituting the plasama. At this
point we will need to investigate the detailed behavior of the ions and electrons
and a more complex physical picture of the plasma will emerge. The waves
will couple to the particle’s velocity distribution functions which in turn will
influence the electromagnetic fields pervading the plasma.

Because the physics and mathematics of such a situation are already com-
plicated enough, we will restrict ourselves to an unmagnetized plasma, i.e.,
~B0 = 0. A cold unmagnetized plasma allows for two kinds of waves, elec-
tromagnetic and electrostatic. Electromagnetic waves propagate at essentially
the speed of light, and are not going to be affected in any measurable way by
the thermal properties of the plasma, but the electrostatic ones certainly will.
Electrostatic plasma oscillations do not propagate and at their high frequencies
ions will remain essentially at rest due to their large inertia.

To describe the physics properly, we need to consider the velocity dis-
tribuion function (VDF) of the electrons, f(~v, ~x, t). Its temporal behavior is
governed by the Vlasov equation

∂f

∂t
+ ~v · ~∇f − e

m
~E · ~∇vf = 0. (3.80)

The electric field will be governed by Poisson’s equation,

~∇ · ~E =
ρ

ε0
=
ρi − ρe
ε0

= e
ni − ne

ε0

=
e

ε0

(∫

d3vfi(~x,~v, t)−
∫

d3vfe(~x,~v, t)

)

(3.81)

We again proceed by introducing unperturbed background quantities, f0, ~E0, ~B0,
and perturbations thereon, f1, ~E1, ~B1. Since we have already assumed an un-
magnetized plasma, we have ~B0 = 0. A macroscopic electric field would drive
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currents until it vanishes, so we may assume ~E0 = 0. f0 will satisfy the zeroth-
order Vlasov equation, leaving the first-order Vlasov equation,

∂f1
∂t

+ ~v · ~∇f1 −
e

m
~E1 · ~∇vf0 = 0. (3.82)

Again, we assume that we can Fourier decompose f1,

f1 ∝ exp
(

i~k · ~x− iωt
)

. (3.83)

We now define the x-direction to be along the electric field (i.e., Ey = Ez = 0).
Inserting in eq. 3.82, we have

−iωf1 + ikvxf1 =
e

m
Ex

∂f0
∂vx

, thus, (3.84)

f1 =
ieEx

m

∂f0/∂vx
ω − kvx

. (3.85)

With these considerations, Poisson’s equation (eq. 3.81) turns into

ikε0Ex = −e
∫

d3vf1, (3.86)

because the ions are not affected by the high-frequency fluctuations. Moreover,
the zero-order electron VDF is not affected by them either, by definition.
Inserting the expression for f1 (eq. 3.85) we readily obtain

1 = − e2

kε0m

∫

d3v
∂f0/∂vx
ω − kvx

. (3.87)

We can perform the two integrals perpendicular to the x-direction, and will
obtain

1 = − e2

kε0m

∫

dvx
∂f̂0/∂vx
ω − kvx

, (3.88)

where f̂0 is the VDF integrated over the y and z velocity direction. In other
words, we now have reduced the 3-d problem to one in one dimension. Obvi-
ously, the integral is singular at ω = kvx, which tells us that something is going
on when particles have the speed vx ≈ ω/k, i.e., when they are in resonance
with the phase velocity of the wave, i.e., with the wave. These particles will
interact strongly with the wave because they will feel the associated electric
field very strongly. Particles traveling much faster or slower will feel a strongly
oscillating field, these oscillations will tend to cancel out. In other words, only
the particles with velocities in the x-direction which are close to the phase ve-
locity of the wave (by definition in the x-direction) will interact with it. This
is the physical origin of the singularity in the integrand. It is telling us that
something is going on here, and that we need to be careful how we treat it!
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Figure 3.2: Contours for the integration in eq. 3.89 for an unstable wave (left),
and a damped wave (right).

We can normalize eq. 3.88 by factoring out n0 =
∫
d3vf0 and defining f̂0

as the normalized VDF. We then have the dispersion relation

1 =
ω2
p

k2

∫
∂f̂0/∂vx
vx − ω/k

. (3.89)

This resonance condition was noticed by Landau in 1946 who was the first
who treated this case correctly. At this resonance, the particles and the waves
can exchange momentum and energy. This interaction is ’collisionless’, i.e.,
there are no collisions between particles associated with this interaction. For
a Maxwellian VDF, f̂0, this exchange of energy and momentum results in a
damping of the wave, this is called Landau damping. Landau showed how to
treat this problem using the Laplace transform, but this treatment is somewhat
obscure to physicists, who are more used to the Fourier transform. So let us do
it the ’complicated’ way, and inspect the physical significance of this process.

Actually, the singularity does not lie exactly on the integration contour. In
fact, waves are normally damped or they grow (by some instability process),
which means that their Fourier decomposition also has an imaginary compo-
nent. Therefore, since v is always real, the denominator in eq. 3.89 does not
vanish. Nevertheless, their pole does contribute to the physics by modifying
the plasma wave dispersion function.

This integral needs to be performed as a contour integral, see Fig. 3.2. For
the case of weak damping and large phase velocity, the pole lies near (and
below) the real axis and we can approximate the integral by a sum of the real
Cauchy principal value plus 2πi times half the residue of the pole,

1 =
ω2
p

k2



P

∫ ∞

−∞

∂f̂0/∂v

v − (ω/k)
dv + iπ

∂f̂0
∂v

∣
∣
∣
∣
∣
v=ω/k



 . (3.90)
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This is evaluated by integrating along the real axis



Chapter 4

The Solar Wind

4.1 Introduction

The idea that the Sun may be emitting streams of charged particles dates back
to the end of the 19th century. For instance Fitzgerald1, in 1892 and 1900, and
Lodge in 1900, suggested that magnetic storms on the Earth were caused by
”a torrent or flying cloud of charged atoms or ions”; that aurorae were caused
by the ”cathode ray constituents . . . as they graze past the polar regions”; that
comet tails could not be accounted for by solar electromagnetic radiation pres-
sure (for the simple fact that one can see stars shining through them), but
could be accounted for by particle radiation emanating from sunspots ”like
a comet’s tail” with an ”average velocity [of] about 300 miles per second”;
and finally that ”there seems to be some evidence from auroras and magnetic
storms that the earth has a minute tail like that of a comet directed away from
the Sun” (all quoted from Dessler (1967)). Similar ideas were put forward and
later substantiated experimentally in the laboratory and in an expedition by
Birkeland in 1896. Figure 4.1 shows Birkeland in his laboratory observing
the effects of a beam of charged particles on a terrella. Birkeland (1908, 1913)
published the results of the 1902 – 1903 Norwegian Auroral Expedition, which,
together with work by Chapman (1918; 1919), made these ideas more popular.
Note that Birkeland in fact suggested a continuous solar wind (Dessler , 1967).
The idea that it was solar corpuscular radiation that caused geomagnetic ac-
tivity was soon deeply entrenched in the minds of geomagneticians which is
witnessed by Bartels definition of the Kp index (Bartels , 1949): The Kp index
is ”designed to measure the varying intensity of solar particle radiation by its
geomagnetic effects”.

Viewed in this historic light, the postulation by Biermann (1951, 1953,
1957) of a continuous solar wind causing cometary tails to be deflected from
the flight path towards the radial direction away from the Sun has the virtue

1Yes, the Lorentz-Fitzgerald contraction Fitzgerald

51
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Figure 4.1: Birkeland observing a terrella in his laboratory. Source unknown.

of bringing up these ideas from the past and of emphasizing that the solar
wind is continuous. These ideas and the first in situ measurements of the
solar wind in the early 1960s by a series of Russian (Luna 2, Luna 3, and
Venus 3) (Gringauz et al., 1960; Gringauz , 1961; Gringauz et al., 1967) and
American (Explorer 10, Mariner 2, and Imp 1) (Bonetti et al., 1963; Scherb,
1964; Snyder and Neugebauer , 1964; Neugebauer and Snyder , 1966, 1967; Ness
et al., 1964) space probes and satellites have intrigued us modern people for
a long time. As a carrier of solar material the solar wind constantly supplies
us with a sample of the solar composition, and thus of ”the stuff we’re made
of”. Some of the questions that arose early in the course of its investigation
still remain unresolved. They may be reduced to two fundamental questions:

• How is the solar wind accelerated out of the solar gravitational potential?

• What is the mechanism of coronal heating?
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Answers to these two questions are very likely to be related but are still
lacking. Nevertheless, we will review some of the ideas which have shaped over
the course of the last fourty years in this chapter.

4.1.1 Electron-Driven Solar Wind

Figure 4.2: Ulysses measurements of
recurring high-speed and slow wind
streams show distinct compositional
differences in both ionization temper-
ature (top) and FIP (bottom). From
Geiss et al. (1995b). Legend: + iα-
particle speed, open (filled) circles show
freeze-in temeperature of carbon (oxy-
gen), open (filled) diamonds the Mg/O
(Fe/O) element abundance ratio.

The first model to explain the su-
personic solar wind proposed by
Parker Parker (1958)has already
been treated in the introductory
lecture and need not be repeated
here. The expansion of an isother-
mal corona results in the supersonic
solar wind. However, the model has
several shortcomings. First, the slow
wind should originate in cool coro-
nal regions according to this model.
However, from measurements of the
charge states of solar wind ions, we
know that it comes from hot re-
gions. On the other hand, the fast
solar wind, which should come from
hot coronal regions according to the
Parker model, originates in cool coro-
nal holes. Second, the corona is
not isothermal. Third, the density
profiles observed with SOHO/UVCS
show such rapid decrease with ra-
dius that the solar wind must be ac-
celerated much faster than assumed
in this simple model. Parker knew
(and knows) about these shortcom-
ings and concluded that some sort of
energy source must be available in the
corona to further accelerate the solar

wind.
The solar wind is accelerated to speeds typically ranging from 300 km/s to

750 km/s and occasionally to > 2000 km/s by processes still not understood.

In normal conditions, it consists of two types, a fast (v
>∼ 600 km/s) wind

and a slow wind. The fast wind originates in coronal holes, regions of unipo-
lar open magnetic field lines. The source of the slow wind is not known and
hotly debated. Three classes of scenarios have been proposed. A first class
places the origin of the slow solar wind at the boundaries of coronal holes,
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where the field lines from the open coronal hole reconnect with closed loops
from the streamer belt, thus releasing highly fractionated plasma into the solar
wind. A second class posits the edges of active regions as the source of the
slow wind. Systematic outflows at such boundaries have indeed been observed
(Sakao et al., 2007a). The third class is based on a topological argument that
requires every coronal hole on the Sun to be linked to all other coronal holes
of the same magnetic polarity (Antiochos et al., 2011). The ’channels’ which
are needed to connect the holes have been named ’S-web’ and would then be
the source of the slow wind.
The twin problem of heating the corona and accelerating the solar wind is as
old as it still is controversial. Two classes of models have been proposed to
solve this problem in a self-consistent manner. In one class of models, the wind
is accelerated and the corona heated by waves generated by footpoint motions
of magnetic flux tubes. Indeed, Alfvén waves are known to have enough en-
ergy to heat the corona and accelerate the solar wind (De Pontieu et al., 2007).
The other class is based on the observation that all open flux tubes on the Sun
root in the vicinity of closed loops, the ’magnetic carpet’ (Title and Schrijver ,
1998). When an open field line reconnects with one of the evolving but still
closed loops, it funnels the material of that loop into the solar wind. Cranmer
(2010) summarizes the key properties of these two classes.
The composition of the solar wind is an important diagnostic tool for the orgin
of the solar wind which has a composition which differs systematically from
that of the photosphere. Elements with low first ionization potential (FIP) are
more enriched relative to oxygen in the slow wind than in the fast wind (see
Fig. 4.2). This has been known for a long time (?Geiss et al., 1995a,b) and
average properties of both solar wind types have been studied extensively (e.g.,
von Steiger et al., 2000). The fast wind appears to be relatively uniform in its
properties while the slow wind is much more variable. There are various theo-
ries to explain the FIP ordering, all rely on some mechanism to separate neutral
atoms from charged ions (see Hénoux , 1998, for a review.). The FIP effect is
explained in more detail in Sec. 4.5.3. The fast and slow wind are not only frac-
tionated in different ways, but also have different charge-state composition (see
Fig. 4.2). This has an important and badly understood consequence. Charge-
state composition is determined in the corona, while the element-fractionating
FIP-process occurs in the chromosphere. Thus this compositional link hints
at an intimate connecion between corona and chromosphere.

4.2 Sources of the Solar Wind

4.2.1 Coronal Holes as the Source of the Fast Wind

The fast solar wind is known to originate in coronal holes (Krieger et al.,
1973; Nolte et al., 1976), regions of open magnetic fields with low electron
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Figure 4.3: Solar Dynamics Observatory (SDO) extreme UV (EUV) image of
the full Sun showing a coronal hole. Credit NASA
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density, easily visible as dark (underexposed) regions in white-light, X-ray,
and extreme ultraviolet images. An example is shown in Fig. 4.3. As shown
by Krieger et al. (1973), the size of the coronal hole is well correlated with
the speed of the solar wind emanating from the hole. Those authors took the
observations that the y-intercept of the fitted linear relation exceeds the speed
of the solar wind as proof that the slow wind can not originate in small coronal
holes. However, that work was performed on data from only three recurrences
of the same coronal hole, and, interestingly, it has not been repeated since.
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Figure 4.4: Solar wind speed vs. coronal hole size. After Krieger et al. (1973).

Today, we believe that it is the superradial expansion factor that deter-
mines fast solar wind speed (Wang and Sheeley , 2006). These authors com-
pared solar wind speed with superradial expansion factors derived from the
potential field source surface model and found them to be well explained by
a conservation of mass and energy along a flux tube, ρv/B = ρ0v0/B0, and
Fw/B = Fw0/B0 where ρ is density, v speed, B magnetic field strength, and
Fw wind energy flux density, the index zero refers to these quantities at the
coronal base. With Fw ≈ (ρ/2)v3, this means that solar wind speed is com-
pletely determined by the original energy given to the proton at the coronal
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Figure 4.5: 3-dimensional structure of the heliosphere as measured by Ulysses.
From McComas et al. (2008).

base, v ≈
√

(2Fw0)/(ρ0v0). Because ρ0v0 increases with increasing superradial
expansion, wind speed decreases with it. This is a simplified argument fol-
lowing the more general solar wind scaling law of Schwadron and McComas
(2003) but neglecting radiative and gravitational losses.

4.2.2 The Streamer Belt as the Source of the Slow Wind

The origin of the slow solar wind is believed to lie in the vicinity of helmet
streamers and/or coronal hole boundaries. Using SOHO/SUMER data, Mad-
jarska et al. (2004) observed a 4-5 times higher reconnection rate along the
edges of a coronal hole than on the quiescent Sun. These reconnection events
were visible as bidirectional jets expelling solar material at speeds up to 150
km/s. They interpreted their results as support for the findings of Wang et al.
(1998) that the edges of coronal holes are a source of the slow solar wind. How-
ever, the latter authors also found that the streamers themselves were sources
of the slow solar wind, i.e., that this kind of wind has multiple sources, the blobs
emanating from the cusps of streamers, probably by footpoint-interchange re-
connection, and the edges of neighboring coronal holes. These findings, based
on remote-sensing observations by SOHO instruments, are consistent with the
findings of Neugebauer et al. (1998); Burton et al. (1999) and Ko et al. (2006a)
who found that the slow wind maps back to streamers. On the other hand,
Posner et al. (2001) identified the boundaries of coronal holes as the source
region for stream interfaces which they found to be rotational discontinuities.

Figure 4.5 shows the association of the slow wind with the streamer belt.
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The left-hand panel shows Ulysses measurements of solar wind speed around
solar activity minimum. The slow wind is concentrated along the equatorial
regions while the fast wind comes from the poles. At this stage of solar activity,
streamers are concentrated along the heliomagnetic equator, as can be seen in
the inset SOHO/LASCO image. The bright regions to the left and the right of
the Sun are coronal streamers. As LASCO images in white light, this implies an
enhanced electron density, as is the case for coronal streamers. The fast wind
emanates from coronal holes which are located in the polar regions and exhibit
equatorward extensions at solar activity minimum. These polar coronal holes
can be seen in the EIT image that is inset in the left-hand panel of Fig. 4.5.
The right-hand panel shows the situation around solar activity maximumen
the solar corona is structured much more unevenly. Streamers emanate at all
angles - a consequence of the large tilt of the solar magnetic dipole as it turns
from one polarity to the other. ast and slow wind are seen at all latitudes.

4.2.3 Active Regions

Whether active regions on the Sun contribute to the solar wind is a highly
controversial issue. Active regions appear as bright regions in EIT images. As
EIT measures in the extreme UV, this corresponds to a hot plasma which is
confined by closed magnetic fields. Because of these closed field lines, we would
not expect any solar wind to be able to escape. Nevertheless, images especially
from the Hinode and SDO missions do show what appear to be open field lines
and outflows emanating from them (see elow). However, it is not clear whether
they are truly open or whether we simply do not see their continuation because
they have a low density. Brightness in UV images goes with density squared,
as all collisionally excited emission.

Recently,Sakao et al. (2007b) have used the new X-Ray Telescope (XRT)
on JAXA’s Hinode spacecraft to measure outflows from what appears to be
the interface region between an active region and a coronal hole boundary.
Figure 4.6 shows their observations. The left-hand panel shows an overview of
the active region, the white bar indicates the position at which the X-ray CCDs
were positioned. The middle panel gives a time-distance plot of brightness
enhancements measured by the CCDs in the time from February 22, 11:33:34
UT to February 22, 17:40 T. The brightness patterns appear to move upward
at a speed of up to 100 km/s, which is better seen in the rightmost panel, an
expanded view of the region between the two bright lines in the middle panel.
The dotted white line represents west-to-east motion at a speed of 140 km/s.
This may indicate the outflow of solar material into interplanetary space.
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Figure 4.6: Hinode/XRT observations of outflow from the edge of an active re-
gion. The white bar in panel A shows the position of the CCD which were kept
there for three days. The middle panel shows the east-west-moving brightness
patterns during a subset of 22’000 s. The region between the two white lines
has been expanded in the rightmost panel, C. The dotted white line corre-
sponds to a speed of 14 km/s. From Sakao et al. (2007b).
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Figure 4.7: FIP fractionation factor as
a function of coronal electron density
at the edges of the active region stud-
ied by Brooks and Warren. The solid
line shows the linear fit discussed in the
text, dashed lines show 95% confidence
interval. Data from Table 1 of Brooks
and Warren (2011).

Several authors have investigated
the link between corona and helio-
sphere. Ko et al. (2006b) observed a
coronal hole at the boundary of an ac-
tive region with UVCS aboard SOHO
and compared the measured elemen-
tal composition (mainly) of the ac-
tive region with that measured in-situ
by SWICS on ACE. Because UVCS
measures mainly on the solar limb,
but SWICS measures plasma orig-
iniating from close to disk center,
UVCS and SWICS did not measure
the same material as such. How-
ever, those authors stress that the
active region and coronal hole did
not evolve much in the 7 days cov-
ered by that campaign. Therefore,
they concluded, the similarities in the
evolution of elemental and charge-
state composition at the solar site
and measured in the solar wind were
highly suggestive that active regions
are one of the sources of the slow so-

lar wind. Since then, e.g., Sakao et al. (2007a) and Harra et al. (2008) have
directly observed outflows from the edges of active regions with speeds which
could reach above 100 km/s using XRT and EIS on Hinode, respectively. The
latter authors interpreted their observations as an expansion of loops that lie
over the active region, which may either reconnect with neighboring large-scale
loops or are likely to open to the interplanetary space, and thus to contribte to
the solar wind. Indeed, newer observations of active region outflows with EIS
(Brooks andWarren, 2011) tend to confirm this idea by showing a FIP fraction-
ation pattern that is comparable to that of the slow solar wind. Fig. 4.7 shows
their measurement of the FIP fractionation factor as a function of (measured)
electron density. The solid line is a linear fit (regression coefficient r ≈ 0.7, see
header), the dashed lines show the 95% confidence level interval. The proba-
bility of randomly distributed points to produce such a fit is vanishingly small
(p < 10−6). Some of the questions that arise from these observations are the
physical cause for this corellation, whether it could survive out to 1 AU, and
whether it could be measured in-situ.
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4.2.4 Observations at 1 AU

The overall properties of the solar wind at 1 AU are easily summarized. During
solar minimum, a two-stream structure is often seen (as shown in Fig. 4.8),
in which high-speed streams alternate with slow solar wind. The fast streams
have values of typically vp ≈ 700 km/s, np ≈ 3 cm−3, and Tkinp ≈ 2×105 K. The
slow wind is much more variable, but the average properties are vp ≈ 400 km/s,
np ≈ 10 cm−3, and Tkinp ≈ 4 × 104 K. He/H abundance ratios are typically
around 5% and 4% in the fast and slow wind, respectively, but He/H ranges
from nearly 0% up to 30% in the slow wind. Interestingly, the flux, np × vp is
similar (only a factor 2 different) for fast and slow wind, ≈ 2×108cm−2s−1 and
≈ 4× 108cm−2s−1, respectively. It does not make much sense to give average
values of the magnetic field, as this depends much on compression, speed,
etc. However, as the discussion in Sec. ?? showed, the radial component of
the magnetic field should follow a 1/r2 law. At one AU it is measured to lie
around 3 nT for both fast and slow solar wind.

Already early measurements had shown that the solar wind needs to be
divided into at least two classes, fast and slow wind. The fast wind emanates
from coronal holes (see Section 4.2.1) and, as Ulysses has shown has a nearly
radial speed of typically about 750 km/s. Its composition is near photospheric,
whether it is enriched in ow-FIP elements is still under debate. Ionic charge-
states indicate its origin in cool coronal holes, typically between 1 and 1.2
MK. The kinetic temperature of the fast wind , however, hotter than that
of the slow wind. In the ecliptic, the fast solar wind is often not as fast as
mentioned above. This is likely due to the interaction of the original fast
stream with adjacent slow wind streams. This is likely to happen already
very close to the Sun within 0.3 AU, as can be seen from Fig. 4.2.4, discussed
below. At high latitudes, the fast wind is very steady, both in composition and
in velocity. Fluctuations are generally small and correlated with fluctuations
in the magnetic field, indicating the presence of Alfvén waves, as discussed in
Chapter 7 and shown in Fig. 7.6.

The slow wind is much more variable in its properties than the fast wind.
This is already seen in the slow-wind periods in Fig. 4.8. Density, temperature,
speed, composition, and magnetic field rarely settle down to the relatively
constant values attained in high-speed streams. Ionic charge-state composition
indicates a hotter original plasma,but the kinetic temperature is normally much
cooler than that of high-speed streams. As ionic charge states freeze in roughly
at the location where their expansion time becomes small compared to the
ionization/recombination time, this probably implies an expansion geometry
in which the slow wind is very rapidly accelerated or in which coronal densities
rapidly decrease. The large variability points to an intermittent origin of the
slow wind - and that is just about as much as we know about its origin - as
discussed above.
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Figure 4.8: Solar wind data from the Advanced Composition Explorer (ACE).
From top to bottom: proton number density (black) and magnetic field
strength (red), proton kinetic temperature, He/H abundance ratio, proton
speed, O7+/O6+ charge-state ratio (black) and Fe/O elemental abundance ra-
tio (red), magnetic field azimuth (black) and elevation (red) angles.
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Figure 4.9: Measured magnetic field angles minus the predicted Parker field
angle. The two peaks around 0◦ and 180◦ show overall agreement with the
Parker model. From Forsyth et al. (1996).

We see in Fig. 4.8 the solar wind speed and the magnetic field angles.
Do they agree with Parker’s prediction? Indeed, as Fig. 4.9 shows, they do
reasonably well, but with a remarkable spread. This is due to the presence
of Alfvén waves and other structures in the solar wind which are discussed in
Chapter 7.

Measurements often use the so-called RTN system which is defined in the
following manner and in Fig. 4.10.

One AU data can be obtained from the ACE Science Center:
http://www.srl.caltech.edu/ACE/ASC/.

Data from all (US) space missions can be obtained from:
http://cdaweb.gsfc.nasa.gov/.

The solar wind streams and their magnetic field observed at one AU have al-
ready undergone substantial processing on their way from the Sun to 1 AU. As
fast wind catches up with slower wind, they begin to interact and, ultimately,
coalesce. From observations by the Heliospheric Imager (HI) on STEREO
(Eyles et al., 2009), we know that this processing must be quite extensive.
Figure 4.2.4 shows a large number of individual streams in the vicinity of the
Sun (small elongations) while only a few survive out to one AU or beyond.

4.3 Solar Wind Acceleration and Heating

Figure 4.12 shows a compilation of many measured coronal density profiles.
They all fall off faster than a simple 1/r2 profile that would be expected if the
corona were static. To conserve flux, there must be some coronal expansion
driving a solar wind. Near the Sun, the density profiles are best fit by the
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Figure 4.10: Definition of the RTN coordinate system. The R direction points
radially outwards, away from the Sun. The RT plane is inclined to the solar
equator at the same angle as the spacecraft heliographic latitude. N stands
perpendicular to this plane and in the half space in which ~Ω, the solar rotation
angular velocity, points. T completes the right-handed system (and generally
points tangentially). The measured magnetic field vector (red) is given by its
magnitude B, and the two angles φB and δB. Often co-latitude, ϑB is used
instead of δB.
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Figure 4.11: A height-time plot of small scale solar wind structures in the solar
wind, as measured by the Heliospheric Imager on STEREO. While there are
many individual streams in the solar vicinity, they are washed out by the time
they reach one AU.

following empirical expression (Aschwanden, 2005):

ne(r) = 1014

[

2.99

(
r

r⊙

)−16

+ 1.55

(
r

r⊙

)−6

+ 0.036

(
r

r⊙

)−1.5
]

m−3 (4.1)

while far from the Sun IPS measurements give

ne(r) = 7.2 · 1011
(
r

r⊙

)−2

m−3 for r ≫ r⊙. (4.2)

Because v(r)n(r) ∝ 1/r2 because of flux conservation, we immediately see that
the solar wind must be accelerated to high speeds already close to the Sun. At
one astronomical unit, we have a solar wind number density of about 5 particles
per cm−3. With an average solar wind speed of 400 km/s, we have a flux of
2 · 1012m−2. The flux must increase as 1/r2 as we approach the Sun because
mass is conserved. Thus, the speed profile can be estimated by extrapolating
solar wind flux to the heliocentric distance in question and inverting nv for v.
This shows that solar wind speed must increase very fast in the corona.

4.3.1 Wave-Particle Interaction

We have already encountered the concept of wave-particle interaction in the
previous chapter, section 2.6. Here we introduce the basic concepts and that of
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Figure 4.12: A compilation of coronal density profiles. From Aschwanden
(2005).
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Right-hand polarised
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Figure 4.13: Right- and left-hand circularly polarized electromagnetic waves
propagating towards the right. The sense of polarisation is measured from the
source of the waves, i. e., in the sense of their propagation.

Landau damping. Figure 4.13 shows two circularly polarized electromagnetic
waves propagating to the right at their phase velocity vph. There are two
conflicting conventions to define the polarization of a wave, here we use the
convention that we use the sens of polarisation as seen from the source or in the
direction of wave proagation. In that convention, ions will gyrate left-handedly,
and electrons right-handedly. As we saw in the previous chapter, particles
gyrate around the ambient magnetic field and propagate along it. While most
particles will never notice an electromagnetic field because it passes it too fast
or too slowly to notice, it is intuitively clear that if a particle moves at the
“right” speed, it will feel the wave’s electromagnetic field. As the particle
and wave move at their relative speeds, the wave appears Doppler shifted
in the particle frame of reference. If the wave frequency is the same as the
particle gyro frequency, then particle and wave are in resonance and the particle
strongly feels the wave’s electromagnetic field. More precisely, the condition
for such a cyclotron resonce is written as

ω − ~k‖ · ~V‖ = nΩ (4.3)

where ω and ~k are the wave frequency and wave vector, ~V and Ω are the particle
veloctiy and gyroperiod. n is an integer, n = 0,±1,±2, . . . The case n = 0
describes the situation where the particle velocity is close to the wave phase
speed, ~V ≈ ~vph = ω

k
. The treatment here is performed in the non-relativistic
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Figure 4.14: The physics of Landau damping.

approximation because the solar wind and the waves in it only propagate at
low speeds compared to e speed of light.

4.3.2 Landau Damping

In the case where n = 0 the wave and the particle move in unison and the par-
ticle feels the electromagnetic field of the wave which changes its momentum
until the particle is no more in resonance with the wave. Thus, the particle
and wave exchange momentum (and energy). If the wave moves slightly faster
than the particle, it will transfer momentum (and energy) to the particle and
vice-versa. This situation is called Landau damping. Obiously, for parallel
motion, ions will be able to resonate with left-hand polarized waves and elec-
trons with right-hand polarized waves. To understand this, let us consider
a wave propagating across a thermalized plasma with a Maxwellian velocity
distribution function, f0(~V ). Then those particles will be able to resonate with
the wave which have velocities V = ω/k because they will be moving at the
same speed as the wave. Obviously, those particles which move slightly faster
than the wave will feel the opposite force from those moving just slightly more
slowly. We can consider the wave as a particle with energy h̄ω and momentum
h̄k. Interactions between particles and waves can the be treated as elastic
collisions between particles; particles slower than the wave will be accelerated,
particles faster than the wave will be decelerated as they will impart part of the
momentum to the wave. Fig. 4.15 shows the popular view of Landau damping
as ’surfing the waves’ in analogy with a surfer ahead of a wave. Only if he
is about the speed of the wave can he surf it. If he is simply floating on his
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Figure 4.15: Physically intuitive, although not entirely correct, picture for
Landau damping. In the situation athe left, the surfer gains energy from
the wave, at the right, he looses energy to the wave. In the particle picture,
particles which are marginally slower than the phase velocity of the wave will
gain energy from the wave, particles that are slightly faster will loose energy.

board he will only be moved up and down by the waves, if he is much faster
than the waves, their effect will average out.

Inspite of its elastic, and thus dissipationless nature, this kind of interaction
is called Landau damping. The damping occurs because for a normal particle
population there are more particles that are slower than the wave than are
faster. Thus, the wave tends to loose energy when it passes through such a
particle population. This distorts the particle velocity distribution function as
indicated by the dotted line in Fig. 4.14.

Consider a distribution f(V ) of particles encountering waves with a phase
speed ω/k. The change in velocity which a particle experiences is small and
independent of this transformation and we have the total change of particle
energy as

∆E = m

∫ ∞

−∞
dV V 〈∆V 〉 f(V ) (4.4)

where 〈∆V 〉 is the velocity change averaged over one wavelength or wave os-
cillation. Let us transform into the rest frame of the wave by subtracting the
phase speed from the particle speeds, V ′ = V −ω/k. Then the above equation
is transformed to

∆E = m

∫ ∞

−∞
dV ′ (V ′ + ω/k) 〈∆V 〉 f(V ′ + ω/k) (4.5)

We can now expand f(V ) around V ′ = 0, i.e., V = ω/k, and obtain

∆E = m

∫ ∞

−∞
dV ′ (V ′ + ω/k) 〈∆V 〉

[

f
(ω

k

)

+
ω

k

∂f

∂V

∣
∣
∣
∣
V ′=ω/k

]

. (4.6)

Let us assume that the particle is accelerated. Then, in the rest frame of the
wave it will soon feel a retarding force which slows it down until it is slower
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than the phase speed again. Then it is accelerated again, etc. Thus, we can
consider this particle trapped in a harmonic oscillator in which the energy gain
has to be an odd function of V ′ (otherwise it would not oscillate). The particle
population will receive a net gain in energy if there are more particles which
are slower than the waves phase speed, i.e., the population will experience a
net energy gain if

∆E > 0 if
∂f

∂V

∣
∣
∣
∣
V ′=ω/k

< 0, (4.7)

i.e., if the local slope is negative at the phase speed. In equilibrium, the energy
transferred from the wave to the particles equals the loss of energy to the wave,

∆E

t
= −∆dEwave

dt
. (4.8)

The average rate of energy loss to the wave is given by the half product of the
waves oscillating electric field with its conjugate complex (the “square” of the
electrc field),

Ewave = ε0δE(t) · δE∗/2. (4.9)

In this product, only the real part of the exponent survives, and the wave
experiences damping,

∆E

t
= −∆dEwave

dt
∝ γEwave(0) (4.10)

where the damping factor γ again depends on e sign of the derivative of the
particle velocity distribution function at V ′ = ω/k. Usually, this will be neg-
ative, and so gamma will be negative as well. However, in cases where the
dictrbution function exhibits a positive slope, the wave will gain energy from
the particles, possibly leading to the grow of instabilities. Such a situation can
occur when a beam of accelerated particles impinges on a low-energy particle
population. We will investigate Landau damping in more detail in Chapter 8.

4.3.3 Ion-Cyclotron Resonance

Let us next consider the case n = 1 of eq. 4.3 in which we have

ω − k‖V‖ = Ω. (4.11)

As long as ω and Ω (the wave and particle frequency and gyro frequency) are
known, the resonance condition can be calculated. For parallel propagation
we have

V‖ =
ω − Ω

k‖.
(4.12)
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Figure 4.16: Normal first-order cyclotorn resonance between charged particles
and circularly polarized electromagnetic waves.

The parallel kinetic energy of such particles can be written as

E‖,res =
1

2
mV 2

‖,res =
1

2
m
(ω − Ω)2

k2‖
=

1

2
mV 2

ph

(

1− Ω

ω

)2

, (4.13)

where Vph = ω/k‖ is the parallel phase speed of the wave. If the waves are
at frequecies which are much less than the cyclotron frequency of the particle,
their phase speed can be aproximated by the Alfven speed, va =

√

B2/(2µ0ρ),
where ρ is the ambient plasma mass density.

In Fig. 4.13 (from Tsurutani and Lakhina (1997)) we see two waves, one
left-hand circularly polarized (top) and one right-hand circularly polarized
(bottom). At low frequency (compared to the ion gyro frequency) the left-
hand polarized waves are ordinary Alfvén waves, at high frequencies they are
ion-cyclotron waves. As long as the plasma frequeny is larger than the electron
gyro frequency, Ωpe > Ω−, left-hand polarized waves can at frequencies exist
up to the ion gyro frequency. Right-hand waves can exist up to the electron
gyro frequency. This is because left-hand waves normally resonate with ions
and right-hand waves normally resonate with electrons.

For resonance to occur, wave and partile normally have to approach each
other. Figure 4.16 shows the normal situation. Because waves and particles
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approach each other, ~k · ~V is negative and the ensuing Doppler shift shifts the
slow wave oscillation up to the fast particle gyro frequency.

There is the possibility that the particle is faster than the wave and catches
up with it. In this case, ions will interact with right-hand polarized waves and
electrons with left-hand waves because they see the waves “from in behind”.
This situation is called anomalous resonance. It appears in regions upstream of
a shock where shock-accelerated particles escape from the shock and generate
right-hand polarized waves.

We have already seen in chapter 2 that ions can be heated by wave-particle
interactions when they resonantly feel an outward-pointing Lorentz or electric
force which increases their pitch angle.

4.3.4 Proton-Driven Solar Wind

Investigations with the UltraViolet Coronal Spectrometer (UVCS) on SOHO
have revolutionized our understanding of the acceleration of the solar wind.
Fig. 4.17 shows a compilation of various studies with UVCS. These observations
can not be understood without a massive heating by waves or turbulence.

4.3.5 Wave-Driven Solar Wind

We have already seen in chapter 2 that particles can interact with waves and
can be heated/accelerated by them. Given the dynamic nature of the corona,
one can easily imagine ways to tap into this energy reservoir to heat the corona
and accelerate the solar wind.

Let us consider a coronal wave field which consists of many waves (As-

chwanden, 2005). Each of them can be described by a wave vector ~k and has
an energy h̄ω. The number of waves or wave packets in a given energy range,
W (~k)/h̄ω, is given by N(~k, t). This is also called the occupation number of

photons in the energy range W (~k) in ~k space. Its evolution with time will be
given by an equation of the following form

∂N(~k, t)

∂t
+ ~vg(~k)

∂N(~k, t)

∂~r
= Γ

(

~k, f(~p)
)

N(~k)− Γcoll(~k)N(~k), (4.14)

where ~vg = ∂ω(~k)/∂~k is the group velocity. The left-hand side of eq. 4.14 is

easily recognized as a continuity equation for the occupation number, N(~k).
If it were conserved, the right-hand side would have to vanish and we would
recover a ’normal’ continuity equation. However, wave occupation number
is not conserved, it can grow or it can decrease. The growth rate is given

by Γ
(

~k, f(~p)
)

and is determined by many (often non-linear) processes. For

instance, waves may be generated by footpoint motions in the photosphere
which excite the field lines which thread through the corona. These modes
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Figure 4.17: Collected UVCS polar coronal hole measurements of (a) O VI
line widths V1/e, (b) ratio of O VI λ1032Åto O VI λ1037Åintensities, and (c)
O VI λ1032Ålineintegrated intensities, with symbols specifying the sources
of the data (see labels for references). Error bars denote ±σ observational
uncertainties. Also shown are the parameterized fits given by Cranmer et al.
(1999) (dotted lines). From Cranmer et al. (2008).
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can then cascade to higher wave numbers through a process called turbulent
cascade which is described in more detail in chapter 7. This growth rate is
multiplied with the occupation number, in other words, the source of waves is
proportional to the growth rate and the already existing occupation number.
Waves can also be ’lost’ and this is described by the sink term, Γcoll(~k)N(~k),

where Γcoll(~k) is the wave damping rate due to cillisions.
But there is a quantity in this equation which is still undetermined, f(~p).

That is the particle momentum distribution function or phase space density,
i.e., the number of particles in a given volume of phase space, (~r,~k). It too is
goverened by a similar equation,

∂f(~p)

∂t
+~v(~p)

∂f(~p)

∂r
=

∂

∂pj

{

Dij

(

N(~k)
) ∂f(~p)

∂pi

}

+

(
∂f(~p)

∂t

)

source

+

(
∂f(~p)

∂t

)

loss

.

(4.15)
Again the left-hand side looks like a continuity equation and the right-hand side
gives sources and sinks. The first term on the right-hand side in curly braces

cntains the diffusion tensor, Dij

(

N(~k)
)

, which depends on the occupation

number of waves in energy range W (~k). The two other terms are source and
loss terms out of a given volume in phase space.

The two equations, eq. 4.14 and eq. 4.15 are coupled to each other via

f(~p) in eq. 4.14 and Dij

(

N(~k)
)

in eq. 4.15. This system of partial differential

equations needs to be solved self-consistently so that the particle phase space
density can influence the wave spectrum and vice versa. Obviously, this is
non-trivial, however, first such models have been developed and applied to the
heating and acceleration of the solar wind.

It does not end here, however. The solar wind is described by the equa-
tions of mass, momentum, and energy conservation along its motion through
the corona These equations can be expressed as moments of the Boltzmann
equation (basically, eq. 4.15, but augmented with a force term). Appendix A4
of my lecture notes ’Physik VI - Teil II’ goes through the detailed derivation.
As you may recall, some kind of closure relation needs to be used to end the
otherwise infinite set of equations.

Thus, a full, self-consistent model for the acceleration of the solar wind
needs to incorporate all of the above equations. Cranmer et al. (2007) have
developed such a model in one dimension and in steady state. They compute
the properties of the plasma along a one-dimensional magnetic flux tube and
the evolution of accoustic and Afvén waves from the photosphere through the
chromosphere and corona into the heliosphere. It is driven by an empirically
derived spectrum of accoustic waves which drive shocks heating the chromo-
sphere and transition regions. It includes heating by Alfvén waves which are
partially reflected at some coronal boundary and the are dissipated by a MHD
turbulent cascade. Finally, acceleration of the solar wind by gradients of gas
pressure, accoustic wave pressure, and Alfvén-wave pressure is calculatated.
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4.3.6 Superradial Expansion

Figure 4.18 shows the superradial expansion of two model coronal holes. The
high pressure in the coronal holes compared to that in the streamer belt deflects
the magnetic field lines equatorwards, resulting in this superradial expansion
(i.e., the field strength decreases faster than 1/r2. This also leads to a density
profile similar to the one given in eq. 4.1. The superradial expansion is often
fitted by the following function

f(r) = 1 + (fmax − 1)

{
1− exp[(R⊙ − r)/σ1]

1 + exp[(R1 − r)/σ1]

}

, (4.16)

where fmax and R1 are empirical numbers. Cranmer et al. (2008) quote values
of fmax = 6.5 and R1 = 1.5R⊙.

4.3.7 Outflow speeds from coronal holes

4.4 Mircroscopic Source of the Solar Wind

The measurements shown in Fig. 4.20 indicate a highly structured plasma flow
in the corona which also results in highly sheared flows. Nevertheless, the flow
pattern is quasi steady, possibly signifying large-scale circulation in the corona.

4.5 Composition of the Solar Wind

4.5.1 Overview and Basic Assumptions

• Stratification. The idea that the solar corona may be gravitationally
stratified, i. e. that the He/H ratio decreases with increasing height
in the solar atmosphere, allows an interpretation of the observed low
helium to hydrogen ratio in wind from coronal streamers Borrini et al.
(1981); Gosling et al. (1981) and the constant higher ratio in fast streams
from coronal holes Bame et al. (1977). This may signify that the slow
wind from coronal streamers originates in very high layers of the corona
Borrini et al. (1981); Gosling et al. (1981); Feldman et al. (1981), while
fast streams stem from lower layers Bame et al. (1977). If this idea is
correct, we should observe less heavy ions in wind from streamers than
in the surrounding solar wind and in fast streams.

• Frictional coupling Theoretical studies of the conditions for accel-
eration of heavy ions out of the solar atmosphere ?Bürgi and Geiss
(1986) reveal the importance of ”Coulomb friction”. The heavier ions
are ”pulled” out of the solar atmosphere by the lighter electron-proton
plasma. In this concept He is at a disadvantage with respect to the heavy
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Figure 4.18: Magnetic field lines in the plane of the sky for (a) the B98 (Ba-
naszkiewicz et al. 1998) model, and (b) the C99 (Cranmer et al. 1999) model
that used the Kopp & Holzer (1976) flux-tube area function. The dotted hori-
zontal line denotes the position of the LOS along which various quantities are
plotted in (c). In (c), the superradial angle δ is given as a function of |x| (it
is the same in the foreground and background halves of the LOS) for the two
models shown above (see labels). From Cranmer et al. (2008).
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Figure 4.19: (a) Derived outflow speeds, (b) perpendicular most probable
speeds, and (c) kinetic anisotropy ratios for model R (red points) and model
C (blue points). Symbols show the weighted means of the reduced probabil-
ity distributions, with styles the same as in Fig. 1. Vertical bars show the
full range of parameter space with reduced probabilities greater than P1σ (for
model R). Also shown are empirical models B1 and B2 from Cranmer et al.

(1999) (dotted lines) andAlfvén wave quantities 〈δv2⊥〉
1/2

in (b) and Aeff in
(c), derived from the model of Cranmer et al. (2007) (dot-dashed lines). From
Cranmer et al. (2008).
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Figure 4.20: Green and yellow lines show open and closed magnetic fields,
respectively. Top panel: red and blue contours show regions of opposite mag-
netic polarity, grey shades show Fe XII radiance in arbitrary units. Bottom
panel: red and blue color shades show Doppler shift of the corresponding Fe
XII line. Field lines start and end in regions of predominantly red or blue
shift, i.e., the footpoints of magnetic field lines are asociated with either up or
downflows. From Marsch et al. (2008).
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ions inasmuch as these will always be accelerated out as long as He is,
but not vice versa. One may determine minimum flux factors (minimum
proton flux) which need to be satisfied for all ions heavier than hydrogen
to be pulled out of the solar gravitational field ?. This mechanism again
might explain the observed low α/p ratios observed in wind from coronal
streamers Borrini et al. (1981); Gosling et al. (1981); Feldman et al.
(1981). If this is the correct explanation, then we expect to observe a
lower He/O ratio, i. e. more heavy ions, in wind from streamers than in
the ambient solar wind or fast streams.

• The FIP effect A comparison of the abundances of elements in the
solar wind or in olar energetic particles (SEPs) with their photospheric
abundances shows a remarkable pattern (?). Elements with low first
ionization potential (FIP) appear to be enriched with respect to elements
with a high FIP. Often, elemental abundances are compared to that of
oxygen as a normalization. The ratio [X/O]/[X/O]photo where X/O is
the abundance of an element relative to that of O is often used as an
indicator of the strength of this FIP effect. It differs for fast and slow
wind, the FIP effet is stronger in the slow wind than in the fast wind.
There is considerable discussion about the ordering quantity. Is it FIP
or the first ionization time (FIT)? The latter would be physically more
intuitive, however, it is not an atomic quantity, but depends on conditions
in corona and chromosphere. Thereore, FIP is normally used, but with
the understanding that FIT may be the physically relevant parameter.
The FIP effect is also observed in coronae of other stars (Brinkman et al.,
2001; Drake et al., 2001). On some occasions it appears to deplete low-
FIP elements (Audard et al., 2003), a feature which is not explained by
most models for the FIP effect. One exception is that by Laming (2004)
which builds on the ponderomotive force acting on ions when they are
heated by a turbulent wave field. This field is a result of the turbulent
cascade which sets in when upward propagating waves are reflected at the
chromosphere-corona interface and ineract with the upward propagating
waves. The strength of the FIP effect is determined by the wave power
only. This model is especially promising because it closely resembles the
wave-driven models for the solar wind acceleration (see section 4.3.5)
and could probably be included in such in a self-consistent manner. The
cause of the FIP fractionation of galactic cosmic rays (GCR) could lie in
a similar effect for stellar winds or in a volatile - condensible fractionation
into dust grains which are then accelerated, see Klecker et al. (2001) and
references therein for a review of GCR abundances.

While several other processes are of importance for acceleration and heat-
ing in the solar atmosphere, it is the two processes mentioned above, together
with the FIP effect (First Ionization Potential), that we believe are responsible



80 CHAPTER 4. THE SOLAR WIND

for the separation of different elements. While the physics of the FIP fraction-
ation process have been well studied ?Vauclair and Meyer (1985); ?, and
abundant experimental evidence has been found Hovestadt et al. (1973); ?);
Cook et al. (1984); Geiss and Bochsler (1985); Breneman and Stone (1985),
the relative importance of stratification and friction has not yet been estab-
lished experimentally. Earlier studies revealing significantly lower α/p ratios
in wind from coronal streamers Borrini et al. (1981); Gosling et al. (1981);
Feldman et al. (1981) could not distinguish between the two processes. The
importance of the FIP effect has not been investigated for coronal streamers
as such Meyer (1993),

4.5.2 Inefficient Coulomb Drag

Describe in more detail, use ?.

4.5.3 The FIP Effect

Use Hénoux (1998) and Laming (2004)
Describe in more detail

4.5.4 Gravitational Settling

Describe in more detail



Chapter 5

Dust in the Solar System

Apart from photons, magnetic field, ions, and electrons, dust particles of all
sizes also contribute to the interplanetary medium. They originate from aster-
oids, comets, and interstellar space. First hints at their existence can be found
in reports by Cassini (1683 and 1693!) about his observations of the zodiacal
light. His pupil, Noccolo Fatio de Duiliiers, gave the first correct interpretation
of these observations in 1684.

Unfortunately, observations of the zodiacal light are rare in our modern
ages because of the increasing amount of light pollution. Zodiacal light is
invisible from the vicinity of large agglomerations because scattered light from
them is more intense than the faint zodiacal light. From a modern point of
view, the first observations of zodiacal lights from the vicinity of Paris and
Geneva seem all the more remarkable. Additional historical accounts can be
found in Fechtig et al. (2001).

Today we interpret the light from the F-corona as photospheric light which
is reflected towards the observer by interplanetary dust particles (IDPs, cf. Fig. 5.1
which shows a photograph of an IDP). The light scattered at IDPs is mainly un-
polarised (only 17% - 19%, Fechtig et al. (2001)) and the photospheric Fraun-
hofer lines are well visible in the spectrum of the F corona because of the slow
stochastic motions (and resulting low speeds) of IDPs.

5.1 The Motion of a Particle in a Central Po-

tential

In preparation of the following sections, we collect the relevant concepts to
describe the motion of a particle in a central potantial, e.g., a gravitational
potential, as is the case for dust particles in the gravitational well of the Sun.
We closely follow Landau and Lifschitz (1981), vol. I. Given a central potential
U(r) which depends only on the distance from the origin (heliocentric distance

81
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Figure 5.1: Interplanetary dust particles. Photo courtesy Max-Planck-
Institute for nuclear physics, Heidelberg.

in our case), the force acting on a particle is given by

~F = −−∂U(r)
∂~r

= −dU

dr

~r

r
(5.1)

and also only depends on r and points along ~r (or antiparallel to ~r). The
angular momentum,

~L = ~r × ~p (5.2)

is a conserved quantity. Obviously, this conservation also means that the mo-
tion of the particle is constrained to a plane perpendicular to the angular
momentum direction. Therefore, this motion can be described by two coor-
dinates only, a radial distance from the origin of the central force, r, and the
angle ϕ which describes the particles motion in polar coordinates. We will al-
ways keep distinct the vectorial quantity angular momentum, ~L and the scalar
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Lagrangian, L,

L =
m

2

(

(̇r)2 + r2ϕ̇2
)

− U(r). (5.3)

The conservation of angular momentum can easily be seen as a consequence
of the Lagrange equation,

d

dt

∂L

∂q̇i
=
∂L

∂qi
= 0. (5.4)

This shows that the generalized momentum, pi = (∂L)/(∂q̇i), is a conserved
quantity in the system described by this Lagrangian. In our case, the general-
ized momentum is just angular momentum,

pϕ = mr2ϕ̇ = ~L|z = |~L|. (5.5)

It is easiest to solve the problem of the motion in a central field by now
considering the conservation laws for energy and angular momentum. The
energy of the particle is given by

E = Ekin+Epot =
m

2
v2+U(r) =

m

2

(

(̇r)2 + r2ϕ̇2
)

+U(r) =
mṙ2

2
+

~L2

2mr2
+U(r).

(5.6)
This can easily be solved for ṙ,

ṙ =
dr

dt
=

√

2

m
{E − U(r)} −

~L2

m2r2
. (5.7)

This in turn can be integrated to obtain t,

t =

∫
dr

√

2
m
{E − U(r)} − ~L2

m2r2

+ const. (5.8)

Using eq. 5.5 to write

dϕ =
|~L|
mr2

dt

and expressing dt by this expression in eq. 5.7, we obtain the equation which
describes the ϕ coordinate,

ϕ =

∫ |~L|
r2
dr

√

2m {E − U(r)} − ~L2

r2

+ const. (5.9)

Equations 5.8 and 5.9 are the general solution of the problem. The second
equation describes the orbit of the particle, the first is an implicit equation for
the temporal evolution.
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5.1.1 The Kepler Problem

We can now insert an appropriate expression for U(r) to obtain the equations
for a particles motion in the solar system (in the central potential of the Sun,
neglecting the effects of planets and three-body collisions). In this case,

U(r) = −GM
r
, (5.10)

where G = 6.67408(31) × 1011m3kg1s2 is the gravitational constant and M =
(1.988550.00025) × 1030 kg is the solar mass. Eq. 5.3 tells us that we can
describe the radial motion of the particle as a motion in an effective potential,

Ueff = U(r) +
|~L|2
2mr2

. (5.11)

The second term is called the centrifugal potential. The values of r at which

U(r) +
|~L|2
2mr2

= E

determine the limits of the radial motion. That is the distances, r, at which
ṙ = 0. Note that this does not mean that the particle no longer moves. At
these locations, the azimuthal velocity component rϕ̇ is generally non-zero.

It is clear that the effective potential goes to infinity for very small helio-
centric distances, has a global minimum

Ueff |min = −G
2M2m

2|~L|2
at r =

|~L|2
GMm

.

for larger heliocentric distances, the effective potential approaches zero again
from negative values. This shows that orbits with negative energy, E, are
necessarily bound, and orbits with positive energy are unbound.

We obtain the shape of the orbit by inserting U = −GM/r into eq. 5.9.
Integration yields

ϕ = arccos

|~L|
r
− mGM

|~L|
√

2mE + G2M2m2

|~L|2

+ const. (5.12)

The integration constant is determined by the choice of the reference direc-
tion for the angle ϕ which we choose such that is vanishes. Introducing the
quantities

p
.
=

|~L|2
gMm

and e =

√

1 +
2E|~L|2
mG2M2

(5.13)
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c
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p

F

Figure 5.2: An ellipse and its relevant quantities.

we can simplify eq. 5.12 considerably and obtain the equation for the orbit
of the particle,

p

r
= 1 + e cosϕ, (5.14)

where p is the so-called parameter (not the impact parameter), and e is the
eccentricity of the orbit. In the coordinate system chosen here (by the choice
of setting the integration constant to zero), ϕ = 0 at the perihelion, i.e., where
the particle is closest to the Sun. Note that this equation (eq. 5.16) can also
be obtained simply by simplifying eq. 5.12 and then inserting the definitions
eq. 5.13 which are motivated below.

It is obvious from the definition of eccentricity above (eq. 5.13) that for
E < 0 e < 1, i.e., the orbit is elliptical. For E > 0 e > 1, in other words,
unbound orbits are hyperbolae.

For an ellipse, as shown in Fig. 5.2 we have from analytical geometry that
the linear eccentricity, c, is

c2 = a2 − b2

where a and b are the semi-major and semi-minor axes, respectively. Eccen-
tricity, e, is then e = c/a, and the paramter is p = b2/a.
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With these definitions we find

c2 = a2 − b2,

b2 = a2 − c2 = a2 − c2a2

a2
= a2 · (1− e2),

p =
b2

a
= a(1− e2),

a =
p

1− e2
,

b = a
√
1− e2 =

p√
1− e2

,

a =
p

1− e2
=

|~L|2
GMm

1

1− 1 + 2E|~L|2
G2M2m

,

=
|~L|2
GMm

G2M2m

2E|~L|2
=
GM

2E
. (5.15)

The aphelion and perihelion can be determined by setting the effective
potential equal to the energy of the orbit,

Ueff = −GM
r

+
|~L|2
2mr2

= E,

0 = Er2 +GMr − |~L|2
2m

,

rmin,max =
−GM ±

√

G2M2 + 4E|~L|2
2m

2E
,

rmin,max =
−GM ±GMe

2E
= a± ae, (5.16)

where we have used that the semi-major axis a = |GM
2E

|, as shown in eqs. 5.15.

5.2 Sources of Dust

5.2.1 Asteroids and Comets

Small dust particles with sizes on the order of the wavelength of light experience
another force apart from gravitation.The IDP feels the the pressure exerted
by the incoming light which results in a reduction of the “felt” central force,
gravitation.

GM −→ (1− β)GM.

The pressure force exerted by light on an unmoving particle is given by

Fr =
S A

c
, (5.17)
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where S = (1/µ0) ~E × ~B is the Poynting flux, A the cross section (roughly the
cross sectional area), and c the speed of light.

Exercise 5.1 Check the units in eq. 5.17!

If a meteor hits an asteroid and produces fine-grained dust which may es-
cape the weak gravitational potential of the asteroid, or if a dust particle leaves
a comet, it will have roughly the same velocity as its parent body up to some
ejection or thermal velocity (which is normally small compared to the orbital
velocity of asteroids and comets), but will experience a reduced gravitation
which will lead to a change in its orbit. Depending on the eccentricity of the
orbit of the parent body, this may force the dust particle onto an unbound
hyperbolic orbit and it will leave the solar system.

Figure 5.3: Two sungrazing comets head-
ing towards the Sun. They disappear before
exiting from the other side, indicating that
they evaporate in the solar corona. From
http://sohowww.nascom.nasa.gov/.)

Let us consider the ex-
treme case of a dust par-
ticle leaving one of the
countless SOHO-comets near
perihelion. Two exam-
ples are shown in Fig. 5.3
(from http://sohowww.nascom.nasa.gov/).
These comets fly on highly
eccentric orbits and come
very close to the Sun where
most of them evaporate. In
nearly all of those cases the
escaping dust particle will
leave the solar system. Its
orbit can be parametrised by
the angle φ

R =
a(1− e)

1 + e cosφ
. (5.18)

For an elliptic (or parabolic)
orbit we have

v2(Rp) =
GM

a

1− e

1 + e
,

(5.19)
which is now changed because of β 6= 0

v2

2
− (1− β)

GM

R
=

E

m
,

GM

2 a

1 + e

1− e
− (1− β)

GM

a(1− e)
(1 + e cosφ) =

E

m
,

1 + e

2
− (1− β) (1 + e cosφ) =

E/m

GM
a(1− e). (5.20)
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For a bound orbit the orbital energy E/m needs to be negative, which gives
an upper limit on β,

1 + e

2
− (1− β) (1 + e cosφ) ≤ 0

e− 1

2
+ β (1 + e cosφ)− e cosφ ≤ 0

β ≤
(
1− e

2
+ e cosφ

)

(1 + e cosφ)−1 .(5.21)

The orbits of SOHO comets are highly elliptic, e ≈ 1 and hence nearly all
emitted dust particles are unbound. Other parent bodies have different eccen-
tricities and, hence, the dust particles emitted by them will also have different
orbital properties. Figure 5.4 shows the values of β for which particles remain
on stable orbits in dependence of their initial eccentricity and for the orbital
angle φ at which they left their parent body.
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Figure 5.4: Maximum values for β for a particle to remain on a stable bound
orbit if it leaves the parent body at orbital angle φ.
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5.2.2 Interstellar Dust

The interstellar medium contains dust and gas in various proportions which
is often given as the so-called gas to dust mass ratio, Rg/d, which gives the
ratio of mass in the gas phase to the mass locked up in dust. First indications
of dust in the interstellar medium came from the absorption and reddening
of light from cepheids which originally had led to large corrections in the size
of the known universe. After Eddington had explained the basic structure of
interstellar absorption lines, it was Trümpler in 1930 who explained interstellar
absorption and reddening as a consequence of dust in the interstellar medium.
Dust grains absorb light from stars which are at high temperatures and emit
it at a much lower temperature, thus leading to absorbtion and reddening.

The local interstellar cloud also contains dust and the curently best esti-
mates for Rg/d = 149 − 217 assuming solar abundances (Slavin and Frisch,
2008). This ratio is obtained using the “missing mass” hypothesis in which
one assumes that the elements not visible in absorption spectra against nearby
stars must be in grains. This is the case for most refractory (non-volatile) el-
ements. These calculations take into account the line spectra of nearby stars,
of the warm inerstellar gas and from the cloud wall.

Interestingly, in-situ measurements with the Ulysses and other dust and
gas detectors give the interstellar Rg/d = 116−127 ( Ref missing!). This value
is an upper limit, as the smallest dust particles do not enter the solar system
because of photon pressure and particle charging (see below). This discrepancy
is not understood.

Interstellar dust that enters the solar system is or was measured with the
dust detector on Ulysses, Cassini, Galileo, and Helios between 0.3 AU and 5
AU. Measured radii of these particles range from 0.05 µm to above 1 µm. Mea-
surements show that grains of different sizes show different dynamic properties
as a consequence of gravitational focussing, solar radiation pressure, and elec-
tromagnetic interaction with the time-varying interplanetary magnetc field.

Interstellar dust enters the heliosphere from the same direction as interstel-
lar neutral atoms - or so it was believed based on measurements with Ulysses
and other spaceraft up to a few years ago. Recent measurements reported by
Krüger et al. (2007) show that this is not anymore the case in the past few
years. A systematic shift in direction appears to have taken place which is not
understood. Is it due to effects in the heliosheath, in the LIC or inside the
heliosphere? Fig. 5.6 shows the situation.
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Figure 5.5: Background interstellar radiation field responsible for ionizing the
LIC. The black line is the FUV/EUV flux from stars, the green line is a model
spectrum for the diffuse emission from hot gas and the cyan line is the modeled
emission from the evaporative boundary of the cloud. The ionization edges for
several important ions are shown in dark blue. The wavelength at which the
cloud is optically thick for several different column densities is indicated in
red. From Slavin and Frisch (2008).



5.3. FORCES ACTINGONDUST PARTICLES AND IMPLICATIONS FORDUST DYNAMICS91

Figure 5.6: Distribution of measured impact directions (i.e. spacecraft rotation
angle at dust particle impact) of interstellar impactors for two time intervals.
Left: 1 January 1997 to 31 December 1999; right: 1 January 2003 to 31
December 2005. In the earlier time interval the maximum of the distribution is
at a rotation angle of 95◦ very close to the value expected from the interstellar
helium flow. In the second interval the maximum is at 135◦. From Krüger
et al. (2007).

5.3 Forces Acting on Dust Particles and Im-

plications for Dust Dynamics

5.3.1 Gravitation

To first order, IDPs move on Keplerian orbits throughout the solar system.
They can only change their orbits by collisions or three-body encounters. The
energy of their orbit is given by

E

m
=
v2

2
− GM

R
=

GM

2 a−Rp

, (5.22)

where a is the semi-major axis and Rp = a(1− e) is the orbits perihelion.

Exercise 5.2 Prove eq. 5.22.

5.3.2 Mie-Scattering

As already mentioned in section 5.2.1, small IDPs experience a reduced grav-
itation because light pressure acts as an additional force. Here, we show how
to calculate the scattering of light off small sperical particles by summarizing
so-called Mie-scattering. We begin by approximating the incoming light waves
by plane waves and then allowing them to scatter off a sphere of arbitrary size:

• Describe light as a plane wave

~E = ~E0 exp(i~k · ~x− i ω t),
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and
~B = ~B0 exp(i~k · ~x− i ω t).

The wave vector ~k can be a complex quantity ~k = ~k′ + i~k′′.

• Because of ~E ⊥ ~B we have ~k · ~k = ω2εµ.

• Properties of the material are all concealed in the index of refraction
N = n+ i k = c

√
εµ

• Expand the plane waves in spherical functions (because we are consider-
ing scattering by a sphere).

• This leads to some lengthy expressions which I do not reproduce here. . .

• These expressions then lead to the exact scattered and absorbed fields
and the three cross sections Cscat, Cabs, and Cext.

• Qscat, Cabs, and Qext give the efficiency of scattering and extinction, Q =
C/A, where A is the geometric cross sectional area of the spherical IDP.

• The resulting expressions contain Bessel functions. Their recursion rela-
tions are then used to derive some remarkably simple recursion relations
for Qscat, Qabs und Qabs which allow very efficient calculations of these
quantities.

Qscat(λ), Cabs(λ), and Qext(λ) can be calculated for a sphere of radius s in
this fashion. Bohren and Huffman (1983) give an efficient algorithm as well
as a FORTRAN code for the numerical computation of these cross-sections.
Fig. 5.7 shows the behavior of Qscat(λ) in a representation which also includes
the size of the particles by choosing 2πs/λ as the independent variable, where
λ is the wave length of the light wave considered.

5.3.3 Light Pressure

The pressure exerted by the light and experienced by the particle is composed
of two parts, the absorbed light and the momentum transfer after the scattering
of light. The expression for the light pressure cross section, Qpr, is then

Qpr
.
= Qabs +Qscat (1− 〈cos θ〉) . (5.23)

The parenthesis contains an expectation value for the cosine of the scattering
angle which also needs to be obtained from Mie theory. Hower, we can also
understand the expression without complicated calculations. If the body is a
perfect absorber, it will not scatter any light at all, and so Qscat = 0. Therefore,
Qpr = Qabs, a black body is a perfect “forward scatterer”. If the body scatters
isotropically, then the expectation value for the cosine vanishes and we have
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Figure 5.7: Scattering efficiency Qscat(λ) for spheres with radius s.

Qpr = Qabs + Qscat. If the body scatters backwards, like a plane mirror, and
does so perfectly, then for every photon it scatters, it will receive twice the
momentum, and we have Qpr = Qabs + 2Qscat.

Often the so-called Rayleigh-Gans theory is used for very small particles.
It is valid for |N − 1| ≪ 1 and k s |N − 1| ≪ 1. In this case, one can use a
simple analytic expression for Qscat,

Qscat =
128π4 s4

3λ4

(
N2 − 1

N2 + 2

)2

. (5.24)

This expression is often used when discussing radiation pressure on small par-
ticles. However, this is rather problematic because the refractive index, N ,
can be a strong function of wave-length and is often not smaller than unity,
as is shown in Fig. 5.8. Therefore, Rayleigh-Gans theory should only be used
if one knows exactly what one is doing. It should never be used to derive size
distributions of IDPs from the zodiacal light.
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Figure 5.8: Refractive index for astronomical silicate After Draine (1985).

5.3.4 Light - The Poynting-Robertson Effect

In the following we derive how to calculate β. Light is scattered by a particle
and exerts a pressure force on it. For the case of a sphere, this can be calculated
exactly using Mie-theory. Let us repeat some results of scattering theory.
Figure 5.9 shows the relevant quantities. The light which is scattered into solid
angle sin θdθdφ around direction (θ, φ) must have entered the system along a
tube whose radius is just the impact parameter, b. The cross-sectional area of
this tube is just the cross section Cλ(θ, φ) for direction (θ, φ) and wavelength λ.
The amount of scattered light at wavelength λ can be obtained by integrating
over θ and φ, thus defining the total cross section Cscat(λ). Similarly, we
can define a cross section, Cabs, for absorption. Then the cross section for
extinction, Cext is also defined, Cext

.
= Cscat+Cabs. Thus, extinction is not the

same as absorbtion! A very nice and simple example can be shown using a
transparent dish filled with milk and one with black ink which are placed on
a projector. Both will cast the same shadow on the screen but one (milk) will
appear bright with scattered light whereas the dish filled with ink will remain
dark, also when looked at directly.
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Figure 5.9: Scattering geometry

To derive the effective β, i.e., the pressure force on the particle normalized
to the gravity force, Qpr must be integrated over the solar spectrum.

〈Qpr〉 =
∫ ∞

0

dλQpr F⊙(λ) (5.25)

The quantity β is defined by

β
.
=
Fr

FG

. (5.26)

Thus, we divide the pressure force

Fr = S0

(
R0

R

)2
π s2

c
〈Qpr〉 (5.27)

by the gravitation force

FG =
4π

3
ρs3

GM⊙
R2

. (5.28)

As expected, the ratio of the two forces is independent of heliocentric distance,

β =
Fr

FG

=
3

4

S0R
2
0

cGM⊙

1

ρ s
〈Qpr〉 = 5.74 · 10−4 〈Qpr〉

ρs
(5.29)

Howver, there is a complicated dependence on the size of the particles. For
large IDPs, the pressure force efficiency,Qpr, is constant and β must decrease
as 1/s, were s is the particle radius. For small particles the dependence is more
complicated, Fig. 5.10 shows β for spheres of radius s composed of astronomical
silicate. Obviously, there can not be any silicate-IDPs in the solar system with
radii between 0.05 < s < 0.8 µm. These would leave the solar system as so-
called β-meteoroids. Indeed, such particles have been measured, they are dust



96 CHAPTER 5. DUST IN THE SOLAR SYSTEM

0.01 0.1 1 10

grain radius [µm]

0.01

0.1

1

 β

bound orbits bound orbitsunbound orbits,
no penetration
into inner heliosphere.

Collisional fragmentation
of large IDPs in inner
heliosphere because of
high spatial density.

Asteroidal/cometary
origin of IDPs. Few
collisions because of
low spatial density.

Figure 5.10: β for spheres of astronomical silicate with radius s.

particles which have been freshly created and are leaving the solar system on
hyperbolic trajectories.

Our discussion of the dynamics of IDPs in the solar system is only half
finished. The interaction of small particles with the solar photon field does
not only result in a reduction of the experienced gravitation, but also leads to
a slowing down of the IDPs, as we will see shortly.

Consider a particle on its orbit around the Sun (Fig. 5.11). Let its helio-
centric distance be R, its velocity ~v. The Poynting flux incident on the particle

is S ′ = S0(1 − ~̇R/c), where ~̇R = ~v · ~S/|S| is the radial velocity component of

the particle. The expression in parenthesis, (1 − ~̇R/c) , is a consequence of
the Doppler effect. According to eq. 5.17, the pressure force exerted on the
particle is then given by

Fr r =
S ′A 〈Qpr〉

c

~S

|~S|
. (5.30)

The non-radial motion of the particle leads to a additional non-radial com-
ponent of the pressure force. This can be understood in two different, but
equivalent ways. On one hand, the non-radial velocity component means that
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Figure 5.11: Sketch illustrating the dynamics of an IDP in the solar photon
field.

the solar radiation does not only hit the particle from the side, but also slightly
from infront (from the direction into which the particle is moving). This ab-
beration by tha angle ~v⊥/c leads to a pressure force

Fr⊥ = −S
′A 〈Qpr〉
c2

~v. (5.31)

It the absorbed energy, S ′A 〈Qpr〉 is emitted isotropically in the rest frame of
the particle (see Fig. 5.12), then no additional force is exerted on the particle.
The other explanation is a little more complicated. In the rest frame of the
Sun, the particle is moving and the frequency of the emitted light is Doppler-
shifted. This leads to a loss of momentum by the particle which corresponds
exactly to the force due to aberration discussed above. Thus, apart from
gravitation, the net force experienced by the particle is given by

m~̇v =
S ′A 〈Qpr〉

c

~S

|~S|
− S ′A 〈Qpr〉

c2
~v. (5.32)

The first expression is the radial force, the second results in a slowing down of
the particle. The second term is often called Poynting-Robertson deceleration.
It leads to a decrease of the semi-major axis of the orbit with a time constant
of

τPR =
s2

4Qpr

mc2

S0r20A
(5.33)
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Figure 5.12: The Poynting-Robertson effect.

according to Burns et al. (1979). After inserting the relevant quantities, this
can be simplified into the mnemonically simple expression

τPR = 400
R2

β
in years, (5.34)

where R is measured in astronomical units, AU. We can now easily calculate
the time which a particle will remain in a radial interval [R,R + dR]

dτPR = 800
R

β(s)
dR. (5.35)

Again, this is only half the story. Let us consider what happens to a dust
particle on its way from the asteroid belt to the inner heliosphere. For large
IDPs, s ≥ 1µm, we have, according to Fig. 5.10, β(s) ∼ 0.2/s. Now the
solar wind and UV flux impinging on the particle will knock atoms out of
the IDP matrix. This process is commonly called sputtering. It leads to a
reduction of the size of the IDP. We know the approximate sputtering rate
from investigations of noble gases in lunar soil grains, from which on finds an
average sputtering rate at 1 AU of approximately S0 ≈ 1 Å per year (Borg
et al., 1980). According to eq. 5.35, a µm IDP released at 2 AU will reach 1
AU after about 50’000 years. However, in the mean time, its size will have
decreased - not by 50’000 Å, but somewhat less because the sputtering rate at
2 AU is four times less than at 1 AU. However, we can easily take this into
ccount and derive the time dependence of the particles size. The change in
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radius is proportional to the time spent in the sputtering environment and to
the sputtering flux.

ds = −dtS0

(
R0

R

)2

(5.36)

We divide this equation by dR and obtain

ds

dR
= − dτ

dR
S0

(
R0

R

)2

,

= 800
R

β(s)
S0

(
R0

R

)2

,

= 800
S0 s

0.2
R2

0R
−1,

ds

s
= 0.4

dR

R
, (5.37)

where the numerical constant in the last step is obtained by evaluating all the
units. The sign disappears after the first line because dR is negative in our
case. The IDP spirals towards the Sun, thus reducing R with time. We can
now integrate this expression,

ln s = 0.4 lnR + C,

s(R) = s0R
0.4 (5.38)

where the integration constant was used to normalize to the original size of
the particle. Thus, our IDP has shrunk by some 30% on its way from 2 AU to
Earth.

5.3.5 Charging of Dust

IDPs experience further forces which are due to the electric charge they acquire
when exposed to the solar wind and solar UV flux. Several processes lead to
charging of the IDP:

• Absorption of solar wind ions and electrons is the most obvious process.
The charge of the IDP makes it attractive or repulsive for electrons or
ions. The absorption cross section for electrons and ions is not equal. It
is easy to show that the absorption cross section for a solar wind particle
with mass, mj, speed u, and charge Zj, σj(U) for an IDP with radius s
and surface potential U is given by

σj(u) = πs2
(

1 − 2Zj eU

mju2

)

. (5.39)

Because electrons have a negative charge (Ze = −1) and a mass which
is approximately 1840 times less than that of a proton, the expression
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in parenthesis for positive surface potential is much larger for electrons
than for protons. Therefore, one would expect that a positive charge of
an IDP would rapidly be cancelled by an inflow of electrons. On the
other hand, a negative charge would be much more stable. Because of
their much larger mass, ions don’t feel the small surface potential of the
IDP and therefore pass by it without noticing. The rule of thumb is that
ions have roughly 1 keV/amu of energy (corresponding to 440 km/s solar
wind speed), whereas electrons at the same solar wind speed have nearly
2000 times less energy. Thus, the solar wind will tend to charge IDPs
negatively.

• The emission of secondary electrons when the IDP is hit by primary ions
or electrons will tend to reduce the effect just discussed in the previous
bullet. It is easier to eject electrons from an IDP (as from any surface)
than an ion, and so it is more probable to charge the ion positively with
this process. The efficiency of secondary electron emission (number of
emitted electrons per incident electron) depends strongly on the incident
energy and is given, e.g., by Mukai et al. (2001).

δy(E) =
δM
e2

(
E

EM

)

exp

[

−2

(
E

EM

)1/2
]

, (5.40)

where δM is a numerical value between 1 and 10. The efficiency maximizes
at E ∼ EM , where ∼ 100eV < EM <∼ 1000eV. The kinetic energy of
solar wind electrons is considerably lower, but energetic electrons can
easily reach these values.

• When a photon with energy greater than the work function of the IDP
material hits the IDP, photoemission of (mainly) electrons occurs. The
resulting current out of the surface is

I = 4πs2
(
R0

R

)2 ∫ ∞

hν=ǫwork+ǫmin

d(hν)
F⊙(λ)

hν
QabsY ·

∫ ǫmax

ǫmin

dǫf(ǫ), (5.41)

where ǫmax = hν−ǫwork and ǫmin = 0 for negatively charged and ǫmin = eU
for positively charged IDPs.

• At very high temperatures above 1000 K, the thermionic effect can con-
tribute to charging IDPs. At such temperatures, some electrons in the
solid matrix of the IDP have enough kinetic energy to surmount the work
function and leave the particle. This effect is only important in the close
vicinity of the Sun where the particles can get hot enough.

The processes disussed above all contribute to the charging of IDPs in
interplanetary space. They all rely on emission of low-energy charge carriers.
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In general, IDPs charge to a low positive voltage which implies that more
electrons are emitted than ions. Because the solar wind consists of a low-energy
thermal population of electrons, the IDP can not charge to high voltages, the
low-energy eletrons feel the IDP potential and can not escape. Moreover,
there are not enough high-energy electrons to contribute significantly to IDP
charging. Thus, the charge of IDPs establishes itself at a relatively low value
of few Volts, 5 V are a typical value which is often used.

The charge on the IDPs also influences their dynamics. The interplanetary
magnetic field which is convected by them by the solar wind leads to a Lorentz
force which can move the particles out of the plane of their motions. Because
the IMF is organized in inward and outward pointing sectors (see Physik VI,
Teil II, Extraterrestrische Physik), this deflection alternates between South-
and Northward pointing. As the sectors are never of exactly the same duration,
this leads to net long-term diffusion out of the ecliptic plane. Because the
magnetic field is larger in the vicinity of the Sun, this effect is more important
there than at large heliocentric distances.

The charge on an IDP is easily estimated from the surface potential.

q = 4 π ε sU (5.42)

With this, it is easy to estimate the Lorentz force acting on the particle.
At about 2.5 AU, in the asteroid belt, the magnetic field is already nearly
perpendicular to the solar wind and the Lorentz force is then simply

FL ≈ q uSWB = 4 π ε sU uSWB ≈ 10−17N (5.43)

This is a small force compared to gravitation, FG = GM⊙4πρs
3/(3r2) ≈ 10−14

N, and is therefore often neglected. However, this is the only influence, apart
from three-body collisions, which can move an IDP out of the ecliptic plane.
Therefore, it is an important force for the dynamics of IDPs. On the other
hand, its small influence has been shown by Sekanina (2000), who investigated
the tails of sun-grazing comets (the SOHO comets) and who found no deviation
from the expected trajectories based on gravitation and Poynting-Robertson
effect.

5.4 Measurements of IDPs

Auer (2001) gives a summary of common in-situ measurement methods for
interplanetary dust. Figure 5.13 (after Auer (2001)) gives a summary.

• The spatial distribution and density of IDP can be inferred from the
intensity of the zodiacal light by inversion. This is only possible within a
certain size (and mass) interval of IDPs. This method requires that the
instrumental stray light is suppressed below about 1% of the zodiacal
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Figure 5.13: Various measurement methods for IDPs. After Auer (2001).

light, normally about 15 orders of magnitude are achieved. Moreover,
the thermal emission of the spacecraft must be taken into account or
suppressed in the infrared part of the spectrum.

• Imaging telescopes can detect light reflected by individual IDPs and can
measure the projection of the velocity of IDPs. With some assumptions
about the size of the IDPs, about geometry and stability of the particles,
some inferences about their radial velocity component can be made.

• Particles in the immediate vicinity of the instrument can be detected
with a so-called light curtain. It illuminates a small area of e.g., 0.01 m2

with a width of approx. 4mm (for the Rosetta dust experiment). Once
it triggers, two additional light curtains are immediately turned on and
the reflected light is focused and the particle time of flight and intensity
of the light are measured to derive speed and size of the particle.

• If a charged particle passes close by an electric conductor, it can induce
a voltage pulse. Using multiple crossed wire meshes, the velocity vector
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and charge of an IDP can be determined. By applying a retarding or
accelerating voltage to some of these meshes the mass of the particle can
be determined.

• Some detectors use the light flash that is produced when the IDP hits
a surface to determine the flux of particles. With high time resolution
electronics, the flash of the crater material can also be resolved. As it
depends on the speed of the incident particle, this gives a measure of the
IDP speed.

• The material that is heated in the impact is partially ionized and can
hit other walls of the sensor where it can lead to further ionization. This
impact ionization is very sensitive even for very small projectile masses.
On the other hand, the instruments require very careful calibration and
modeling, and different fractions of the IDP can be ionized, depending
on its composition.

• The ionized material can also be measured in a time-of-flight mass spec-
trometer. Careful choice of the voltages applied to the focusing grids and
electrodes even allows elementally and isotopically resolved composition
measurements on individual dust particles.

• When IDPs hit a thin foil, they can perforate it. They loose some en-
ergy and, depending on their mass and kinetic energy, can be totally
destroyed.

• The fragments after perforation can be measured with a second foil.
Some instruments use pressurized vessels and particles are measured by
sudden drops in pressure.

• Alternatively, the discharge of a capacitor can be used which signals pas-
sage of an IDP. The dielectric between the electrodes can turn conductive
due to the high pressures and temperatures during passage of an IDP. In
evacuated capacitors, the impact-ionized material of the IDP can lead to
a voltage spike which can also be measured.

• The impact of an IDP onto a suitable polarised material leads to its
permanent de-polarization which can be measured optically.

• Add STEREO SWAVES measurements!
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Chapter 6

Interstellar Pickup Ions in the
Heliosphere

6.1 Introduction

The solar wind which fills interplanetary space carries with it a certain momen-
tum and an embedded magnetic field. At some point on its way from the Sun,
the solar wind ram pressure equals the pressure in the interstellar medium,
resulting in a stagnation surface, the boundary between solar system plasma
and the local interstellar medium (LISM) – the heliopause. There is some ob-
servational evidence for the heliopause. Both Voyager spacecraft have detected
some unusual radio emissions in the outer heliosphere during two intervals, one
in 1983-84 (Kurth et al., 1984), the other in 1992-93 (Gurnett et al., 1993).
In both cases, the radio emission occurred about 400 days after a period of
intense solar activity which both produced the largest Forbush decreases ever
observed. Such Forbush decreases are strong (10%) decreases in the counting
rate of neutron monitors which are the consequences of strong shocks prop-
agating outward from the Sun into the outer heliosphere. These large-scale
disturbances reduce the flux of galactic cosmic rays in the inner heliosphere,
which, in turn, decreases the count rates in neutron monitors. The outward
propagating shocks and disturbances eventually interact with the heliopause
and produce characteristic radio emission. Figure 6.1 schematically illustrates
the situation as it is believed to have taken place during the two periods when
Voyager I and II both measured the unusual radio emission from the boundary
of the heliosphere. In the inner heliosphere, electron density, ne, decreases as
1/r2. The plasma frequency, fp is defined as

fp =

√

e2ne

ε0me

,

and therefore decreases linearly with increasing heliocentric distance. At 1 AU,
fp ∼ 20 kHz, and thus at 100 AU, fp ∼ 200 Hz, which lies significantly below

105
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Figure 6.1: Plasma frequency as a function of heliocentric distance. In the
solar wind, fp decreases with distance. As the solar wind turns subsonic at
the termination shock, fp increases by a factor < 2. It increases again at
the heliopause to the value representative of the density needed for pressure
balance with the interstellar medium. Adapted from Gurnett et al. (1993)

the observed 2 - 3 kHz radio emission. Therefore, the emitting region must
have a higher density. The region beyond the termination shock is probably
not that much denser than within, because the termination shock is most prob-
ably rather weak (Cummings and Stone, 1996). However, even a strong shock
would not suffice to allow for sufficiently high densities to account for the high
frequencies. Since the heliopause is the locus of pressure balance between the
interstellar medium and the (now subsonic) solar wind, we may expect signif-
icantly higher densities at that location. Estimates for the electron density in
the interstellar medium range from 0.6 cm−3 to 1 cm−3, resulting in a plasma
frequency, fp ∼ 2.2− 2.8 kHz. This strongly supports the view that the radio
emission originated at the heliopause. Depending on the assumptions made
for the propagation speed of the shocks, the distance to the heliopause can be
calculated from the time difference between Forbush decrease and the mea-
surement of the radio emission. Gurnett et al. (1993) arrive at a heliocentric
distance of the heliopause between 110 and 160 AU.

Interstellar gas that enters the heliosphere as neutral atoms is ionized in-
side, and swept back outward by the solar wind. The distribution functions
resulting from this process are highly non-Maxwellian and result in a net heat-
ing of the plasma filling the heliosphere. As a result, the originally strongly
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supersonic solar wind flow turns into a subsonic flow at a point somewhere
within the heliopause, the termination shock. Estimates for the distance to
the termination shock range from 80 - 100 AU, beyond the current position of
the upstream Voyager spacecraft. A simple calculation for pressure equilibrium
would demand

ρ(rs)v
2
sw = ρ0

(
r0
rs

)

v2sw = P∞, (6.1)

where P∞ is the pressure in the interstellar medium. Obviously, rs can be
obtained from this equation. A more realistic calculation was presented by
Parker (1963) who imposed the Rankine-Hugoniot relations at the shock and
demanded that P −→ P∞(r −→ ∞). Equation 6.1 is slightly modified,

P∞ = ρ0

(
r0
rs

)

v2sw







2

γ + 1

[

(γ + 1)2

4γ

] γ
γ−1






, (6.2)

where γ = 5/3 is the ratio of specific heats for an ideal mono-atomic gas.
The expression in curly braces evaluates to 0.88 which lies near unity. The
uncertainties due to insufficient knowledge of P∞ (both the kinetic and the
magnetic component), as well as the questionable validity of the assumption
of a strong hydrodynamical shock introduce uncertainties which are larger than
the deviation from unity. Depending on the values inserted in equation 6.2,
shock locations in the range between 70 and 140 AU can be obtained.

However, there is an intriguing derivation of the shock location, as well as
of its strength that has been proposed by Cummings and Stone (1996). They
used energy spectra of the anomalous component of cosmic rays (ACRs) mea-
sured with instruments aboard the Voyager spacecraft to determine several
important heliospheric parameters. Using energy spectra of different elements
with different masses and ionization properties, as well as their radial de-
pendence, they succeeded in deriving a value of 80.8(−3.0,+2.4) AU for the
heliocentric distance of the termination shock.

The existence of a bowshock of the heliosphere in the interstellar medium,
analogous to the Earth’s bowshock, is an object of debate. Its existence de-
pends strongly on the strength of the magnetic field in the LISM.

The heliosphere itself is structured by the solar wind, and, with increas-
ing heliocentric distance, the mass loading by interstellar pick-up ions. In
the inner heliosphere, the interactions between solar wind streams of different
speeds set up interaction regions. During solar activity minimum conditions,
these interaction regions form recurrent patterns, corotating interaction re-
gions, CIRs. As a fast solar wind stream catches up with slow solar wind,
pressure builds up at the stream interface. The pressure wave propagates for-
ward into the slow wind, and, symmetrically, another wave propagates back-
ward into the high-speed stream. Eventually, the two waves steepen into a
forward and a reverse shock which bound the CIR. The identity of the two
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solar wind streams is not lost, but their kinetic properties are altered com-
pletely (Wimmer-Schweingruber et al., 1997, 1999). The interaction of the fast
and slow streams and the shocks generate substantial amounts of turbulence.
Suprathermal particles, i. e. particles which are sufficiently removed from the
core of the velocity distribution functions of the solar wind, are readily accel-
erated in these turbulent regions and in turn generate waves that can serve as
scattering centers for other particles. Recent results of Gloeckler et al. (1994)
have shown that these particles are not accelerated at the shocks themselves,
but rather in the turbulent regions. Schwadron et al. (1996) have identified the
acceleration process as transit-time damping. The pre-accelerated particles are
then efficiently injected into shock acceleration at the bounding shocks, more
efficiently at the reverse shock because they are already more energetic there.

The heliosphere is an important modulator of galactic cosmic rays at the
Earths orbit. Only the more energetic particles can diffuse inward against the
magnetic turbulence present in the heliosphere, and against more formidable
barriers presented to the cosmic rays, such as the large-scale magnetic struc-
tures associated with coronal mass ejections or, to a lesser extent, corotating
interaction regions. Both these objects merge at larger heliocentric distances to
form merged interaction regions. The modulation of the GCR is thus strongly
dependent on the phase of the 22-year solar cycle, GCR fluxes being higher
during solar activity minimum than during maximum. The modulation of the
GCR is an excellent test for our understanding of the role of scattering in
turbulent plasmas. An extensive review of the heliosphere is given by Suess
(1990).

6.2 The Model of Vasyliunas and Siscoe

6.2.1 Neutral Particle Trajectories

We will describe the dynamics of interstellar neutral particles entering the
heliosphere at a velocity v∞. We will follow the work of Fahr (1968); Semar
(1970) and Blum and Fahr (1970). Its orbit will be completely determined
by its impact parameter p0 and by v∞ except for symmetry around the axis
pointing towards the entering neutral flow. Thus the problem is intrinsically
a two-dimensional one, and the orbit can be described by two coordinates,
distance from the scattering center (the Sun) and an angle ϑ which is measured
relative to the axis pointing towards the entering neutral flow. In the center
of mass coordinate system, an unbound Keplerian orbit can be described by

r =
p

1 + e cosϕ
, (6.3)
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Figure 6.2: Two pairs of orbits intersecting in points P0(r0, ϑ0) and P1(r1, ϑ1).
Both orbits are completely determined by their impact parameters p01, p02 and
by v∞.

where p is the parameter (not the impact parameter) and e is eccentricity. In
terms of more physical parameters,

r =
βp20

1 + βc cosϕ
(6.4)

with impact parameter p0 and semi-major axis β,

β
.
=

v2∞
GM

, (6.5)

c2 = p20 +
1

β2
. (6.6)

In this coordinate system ϕ = 0 at perihelion, rmin = 1/β(e − 1). It is more
convenient to transform into a system with origin in the upwind direction,
i. e. to transform to an angle ϑ according to ϕ = ϕ0 − ϑ, where ϕ0 is the angle
towards the incoming flow. Then, using the identity cosϕ = cos(ϕ0 − ϑ) =
cosϕ0 cosϑ+ sinϕ0 sinϑ we have the convenient formulation of eq. 6.4

r =
βp20

1 + βp0 sinϑ− cosϑ
. (6.7)
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Each point in the (r, ϑ)-plane is reached by two orbits corresponding to two
impact parameters, p01, p02. They can be found by solving eq. 6.7 for p0,

p0 1,2 =
r

2
sinϑ±

[

(
r

2
sinϑ)2 − (1− µ)

GM

v2∞
r(1− cosϑ)

]1/2

. (6.8)

µ is a parameter that accounts for the reduction in the gravitational force
due to photon pressure. It is approximately unity for hydrogen, and smaller
for other atoms. The velocity in P is always along the trajectory and its
magnitude is

v(r) =
√

v2∞ + v(r)2escape = v∞

√

1 +
2

βr
. (6.9)

Ignoring ionization processes, the flux of neutral particles along a trajectory
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Figure 6.3: Definition of δ and dp0.

is constant. This can be written as a continuity equation along a neutral flux
tube of diameter dp0

n∞v∞p0dp0 = N(r, ϑ)v(r)r sinϑdr cos δ, (6.10)

where δ and dp0 are defined in Fig. 6.3. As is shown in Fig. 6.4,

cos δ =
rdϑ

√

dr2 + (rdϑ)2
=

r
√

r2 + ( dr
dϑ
)2
. (6.11)

It is easier to evaluate the derivatives in the ϕ coordinate system, and then to
transform into the ϑ system again,

cos δ =
p0

r
√

1 + 2
βr

. (6.12)

Solving eq. 6.10 for the neutral density at point P (r, ϑ) yields

N0(r, ϑ) =
n∞
sinϑ

dp0
dr

. (6.13)
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Figure 6.4: Geometry for eq. 6.11.

6.2.2 Neutral Particle Density

We have found the expression for the neutral density at a given point in the
heliosphere under the assumption that there is no ionization. In order to derive
the neutral density of ionizable atoms we need to include ionization processes.
There are two main processes, photoionization which is the dominant process
for He, C, and Ne, and ionization by resonant charge exchange which dominates
for H. Both processes contribute in about equal amounts to the ionization of
O and Ar. For N, no data on charge exchange are currently available. In this
discussion, we will limit ourselves to ionization by these two processes, charge
exchange (subscript c−e) and photo ionization (subscript p).

The probability to ionize a neutral atom on an infinitesimal part of the
trajectory, d~l is

dpi =
d~l

v(r)

(

nsw(~r)σc−e(|~vsw(~r)− ~v(~r)|)|~vsw(~r)− ~v(~r)|+ σpΦp

(r0
r

)2
)

.

(6.14)

The first term gives the time spent on d~l, while the terms in the large brackets
give the total ionization rate 1/τ . In the following we will omit the arguments
of σc−e. σc−e is only a weak function of relative speed between 300 km/s and
800 km/s. In addition we define the encounter speed vrel,

vrel
.
= |~vsw(r, ϑ)− ~v(r)|. (6.15)

In analogy with the optical depth, we integrate dp along the trajectory to
obtain an extinction function E(r, ϑ) (Semar , 1970),

E(r, ϑ) = exp

[

−
∫ l(r)

∞

d~l

v(r)

(

nsw(r, ϑ)σc−evrel + σpΦp

(r0
r

)2
)]

. (6.16)



112CHAPTER 6. INTERSTELLAR PICKUP IONS IN THE HELIOSPHERE

From Fig. 6.3 we see that

dl =

√

r2 +

(
dr

dϑ

)2

dϑ. (6.17)

Again taking the derivatives in the ϕ coordinate system, we find

dl

dϕ
=
r2

p0

√

1 +
2

βr
. (6.18)

We can now easily find the result for the case of a low density cloud and
where the solar wind is not strongly influenced by pick-up ions. In that case,
solar wind density drops as 1/r2, and vsw remains constant. Assuming a speed
independent charge-exchange cross section, we find that the ionization rate
drops with 1/r2 and we can write the integral in eq. 6.16 as

I =

∫ l(r,ϑ)

∞

dl

v(r)

(r0
r

)2 1

τ ′
,

=
r20
τ ′v∞

∫ ϕ2

ϕ1

dϕ′

(
r2

p0

√

1 + 2
βr

)

(

r2
√

1 + 2
βr

) ,

=
r20ϑ

τ ′v∞p0
, (6.19)

because the integration over ϕ′ is just ϑ. Thus, including the two trajectories
intersecting in each point, we have, under the assumptions just mentioned, the
density of interstellar neutral gas at a given point P (r, ϑ),

N(r, ϑ) =
n∞
sinϑ

[
dp01
dr

e
− r20ϑ

τv∞p01 +
dp02
dr

e
− r20(2π−ϑ)

τv∞p02

]

. (6.20)

6.2.3 The Flux of Pick-Up Ions

With these preparations the flux of pick-up ions at a point P (r, ϑ) is easily
derived. As is shown in Figure 6.5 all that needs to be done is to integrate the
number of ionized particles along the radius vector ~r to P (r, ϑ),

Fi(r, ϑ) =

∫ r

0

dr′N(r′, ϑ)Rionis, (6.21)

where

Rionis
.
= nswσc−evrel + Φp0

(r0
r′

)2

σp (6.22)

is the ionization rate at a given point P ′(r′, ϑ′). Under the assumption that
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Figure 6.5: The flux of pick-up ions at a point P (r, ϑ) is the integral along the
line vector ~r over the number of ionized particles at the intersection of ~r and
the neutral trajectories.

the solar wind flux, Φsw = nswvsw, decreases as (r0/r)
2,

Fi(r, ϑ) =
n∞
sinϑ

∫ r

0

dr′Rionis

[
dp01
dr

e
− r20ϑ

τv∞p01 +
dp02
dr

e
− r20(2π−ϑ)

τv∞p02

]

, (6.23)

=
n∞
sinϑ

(r0
r

)2

Rionis(r0)

[
∫ p01

0

dp′01e
− r20ϑ

τv∞p′01 +

∫ p02

0

dp′02e
− r20(2π−ϑ)

τv∞p′02

]

,

which is equivalent to the expression derived by ?. This can readily be inte-
grated. The integral is of the functional form

I =

∫ u

0

dx e−β/x, (6.24)

where β = r20 ϑ/(τv∞) and u = p0. Transforming z = 1/x we easily find
(eq. 3.351.4 in Gradshteyn and Ryzhik , 1980),

I = ue−β/u + β Ei(−β/u). (6.25)

The exponential integral, Ei(−x), with negative arguments is not easily han-
dled numerically, and we use the functional relation

Ei(−β/u) =
∫ ∞

β/u

dt
e−t

t
= −E1(β/u) (6.26)

to obtain our final result,

Fi(r, ϑ) =
n∞
v∞

1

sinϑ

r40
r2
R2

ionis

[

ϑΨ
(p01
λϑ

)

+(2π − ϑ)Ψ

(
p02

λ(2π − ϑ)

)]

, (6.27)
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where

Ψ
.
= xe−1/x − E1 (1/x) . (6.28)

This is the result originally derived by ?. We have plotted Fi(r, ϑ) for ϑ = 0
and for pick-up protons and neon using the ionization rates given by ? in
Figure 6.6. From it we read off that the flux of interstellar pick-up neon is
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Figure 6.6: Flux of picked-up protons and neon relative to the solar wind flux
versus heliocentric distance in the upwind direction (ϑ = 0).

about 2.5 10−5 times the solar wind neon flux at 1 AU.

6.2.4 The Interaction of the Solar Wind With Pick-Up
Ions

The preceding discussion has tacitly assumed that the newly created pick-up
ions are so few in number that they have no effect on the solar wind. However,
brief consideration of the numbers involved will easily convince us that this
is not true. Present day values for n∞ are in the range 0.05 − 0.25cm−3.
Solar wind density at 1 AU is approximately 10 cm−3. Thus, at 10 AU, solar
wind density has already dropped to n∞. Thus, apart from charge-exchange
ionization, there must be some additional interaction between the solar wind
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and the interstellar medium within the heliosphere. A newly created pick-
up ion will gyrate around the interplanetary magnetic field and thus have a
speed of between −vsw and vsw with respect to the solar wind. A Maxwellian
distribution with this width would indeed be very hot. Due to the adiabatic
expansion of the outwardly flowing solar wind, the pick-up ions are cooled and
can thermalize with the solar wind. The resulting distribution function, f , is
highly non-Maxwellian, but its effective temperature (defined as the second
moment of f) is in any case considerably higher than that of the solar wind.
We will derive it in Section 6.4.

The charge-exchange process is itself an additional source of interaction
between the solar wind and the heliospheric interstellar matter. When an
interstellar atom charge exchanges with a solar wind ion, the solar wind ion
escapes as an energetic neutral atom (ENA) with approximately the speed of
the solar wind, thus removing its momentum from the solar wind. Independent
of the ionization process, photo ionization or charge-exchange ionization, the
newly created pick-up ion needs to be accelerated to solar wind speed, thus
mass-loading the solar wind. The net effect of these processes is to slow down
the solar wind and to slow down the adiabatic cooling rate. At some point, the
solar wind will then turn subsonic, leading to the formation of the termination
shock.
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Figure 6.7: The photon flux decreases as 1/r2 and is additionally attenuated
by the photoionization of neutral H.

Photoionization leads to a slight attenuation of the photon flux out of the
heliosphere and the surrounding interstellar material. It is instructive to derive
an analytic expression. Following the sketch in Figure 6.7 we can write down
the following differential equation for the photon flux:

dΦp(r)

dr
= −2

r
Φp(r)−N(r)Φp(r)σp. (6.29)

This equation has the solution

Φp(r) = Φp0

(r0
r

)2

e−σp
∫ r
0 dr′N(r′). (6.30)
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Because the density of interstellar neutral particles is reduced in the inner
heliosphere, the actual attenuation is somewhat less strong. We can include
the depletion of neutral particles in the inner heliosphere by inserting the
expression for neutral density found in eq. 6.20. The integral is easily evaluated
for the upwind direction, and, for large distances, we find that, in addition to
its 1/r2 attenuation, the photon flux is additionally attenuated by a factor

fatten = eσpn∞γ

(
r0
τv∞

) r20
τv∞

σpn∞ (r0
r

) r20
τv∞

σpn∞

e−σpn∞r, (6.31)

where γ = 0.57721 . . . is Euler’s constant. The first two factors are very near to
unity because of the smallness of the exponent, the two radial functions are only
a weak additional attenuation. We have plotted this additional attenuation
(eq. 6.31) in Figure 6.8. The fact that the additional attenuation can plotted
on a linear scale shows that this correction is small. ForN independent of r, the
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Figure 6.8: Additional attenuation of the 1/r2 photon flux due to ionization
of interstellar neutrals. The overall effect is small.

exponent is of the form λr where λ = Nσp is the length scale. ForN = 0.1cm−3

and σ ∼ 10−18cm2 λ turns out to be about half a parsec and this effect is not
noticeable. However, for larger N , say N = 1000cm−3 as is the case in dense
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molecular clouds, λ is on the order of about 102 AU. In other words, for almost
all situations attenuation effects of the photon flux are unimportant for the
ionization of the inflowing interstellar medium. Nevertheless, this discussion
has prepared us for the following discussion.

Similar considerations can be made for the solar wind flux. However, for
the ionization of interstellar atoms entering the heliosphere, we need to know
the total flux of ions , Φi(r), not only of the solar wind, Φsw(r). Since the
charge-exchange process leaves the solar wind flux unchanged, we only need to
consider photo ionization, but as a source of particles, not a loss of photons,
as in eq. 6.29. Thus, we have the following equation for the ion flux,

dΦi(r)

dr
= −2

r
Φi(r) +N(r)Φp(r)σp. (6.32)

This equation is somewhat more complicated than eq. 6.29, since it contains
Φp(r) as well as Φi(r). Its solution is

Φi(r) = Φp0

(r0
r

)2

σp

[∫

dr′N(r′)e−σp
∫
dr′′N(r′′) + C

]

, (6.33)

where C is the integration constant that needs to be fixed such that Φi(r0) =
Φi0, i. e. ,

C =
Φi0

Φp0

1

σp
−
∫ r0

0

dr′N(r′)e−σp
∫ r′

0 dr′′N(r′′). (6.34)

Inserting eq. 6.34 in eq. 6.33 we obtain the final expression for the solar wind
flux,

Φi(r) = Φi0

(r0
r

)2

+ Φp0

(r0
r

)2

σp

∫ r

r0

dr′N(r′)e−σp
∫
dr′′N(r′′), (6.35)

Note that the charge-exchange cross section, σc−e, does not enter in the dis-
cussion, since charge exchange leaves the flux of ions unchanged.

In order to determine the deceleration of the solar wind, the momentum
flux, Φm(r, ϑ) at a given point, P (r, ϑ), needs to be known. The momentum
flux needs to obey the differential equation

dΦm(r)

dr
= −2

r
Φm(r)−mpN(r)Φi(r)σc−evsw(r), (6.36)

where mp is the proton mass and vsw(r) is solar wind speed which is given by
the ratio of momentum flux to particle flux,

vsw(r) =
Φm(r)

Φi(r)mp

. (6.37)

Inserting eq. 6.37 in eq. 6.36 we obtain a simpler equation for Φm(r, ϑ),

dΦm(r)

dr
= −2

r
Φm(r)−N(r)Φm(r)σc−e, (6.38)
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which has the same type of solution as eq. 6.32,

Φm(r) = Φm0

(r0
r

)2

e−σc−e

∫ r
0 dr′N(r′). (6.39)

Finally, we can write down the expression for solar wind speed, vsw(r),

vsw(r) =
Φm0

(
r0
r

)2
e−σc−e

∫ r
0 dr′N(r′)

mp

[

Φi0

(
r0
r

)2
+ Φp0

(
r0
r

)2
σp
∫ r

r0
dr′N(r′)e−σp

∫
dr′′N(r′′)

] . (6.40)

In the case of small neutral densities we retrieve the usual result of constant
solar wind speed. It is easier to see this by setting the cross sections equal to
zero.

6.3 Measurements of Pickup Ions

Interstellar pick-up ions were first observed by Möbius et al. (1985), who mea-
sured interstellar He+ at 1 AU. With launch of the Ulysses spacecraft with the
SWICS instrument, a wealth of observations of pick-up ions has been made.
Ions detected include H+, He+, C+, N+, O+, and Ne+ (Möbius et al., 1985;
Gloeckler et al., 1993; Geiss et al., 1994; ?). In addition, inner-source pick-up
ions have been measured.

Measurements of the distribution functions of pick-up ions have revealed
interesting insights into transport phenomena in the heliosphere, for exam-
ple long mean free paths for low-rigidity particles, i. e. pick-up ions (Gloeckler
et al., 1995). Published measurements of pick-up ion distribution functions
with SWICS do not show the same shape of the distribution function as de-
rived in eq. 6.46. The instrument field of view is not the same for all parts of
the distribution function. This needs to be corrected using the so-called duty
cycle which we define as the fraction of the distribution function that can be
seen by the instrument compared to the full distribution function. It can be
computed by integrating the distribution function f(v) over the instrument
viewing angles. For SWICS, this is achieved by first transforming the velocity
distribution function into the spacecraft frame (a non-relativistic, i. e. Galilean
transformation) and subsequently rotating from the spacecraft frame into the
instrument frame. Then the distribution function needs to be integrated over
the viewing angles and E/q acceptance of the instrument.

6.4 The Non-Thermal f (v)pick−up

The pick-up process and subsequent transport of the picked-up ions result in a
non-thermal distribution function of pick-up ions. Nevertheless, the resulting
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distribution function is surprisingly easy to derive. We follow ? and investigate
some of its consequences.

The picked up ions immediately begin to gyrate around the magnetic field
that is swept along with the solar wind. It is often assumed that they then
pitch-angle scatter on magnetic inhomogeneities and that they rapidly become
isotropized. The measurements of Gloeckler et al. (1995) show that this simple
picture is not quite correct, the picked-up ions do not easily scatter through
90◦. For our purposes, this effect is unimportant and we will neglect it. It
can be corrected with a simple Ansatz in the end. The isotropized pick-up
distribution (a shell in velocity space) is convected outward with the solar
wind and experiences adiabatic cooling. Thus, the radius of the shell will
decrease with increasing heliocentric distance. Hence, the energy of a picked-
up ion can give information about the distance where it was ionized. In the
solar wind reference frame, the ion has kinetic energy E0 = 1/2 mV 2

sw (∝ kT ).
For an ideal gas we have for adiabatic expansion,

PV γ = nkTV γ = const.,

=
ν

V
kTV γ,

= νkTV γ−1, (6.41)

where ν is the number of particles and γ = cp/cV . Hence,

kTV γ−1 = kTV
2
3 for γ = 5/3,

kT ∝ V − 2
3 ,

kT ∝ r−
4
3 and thus

(kT )3/4 r = const. (6.42)

Because E = kT , the inner energy of the gas E3/4r = const. Hence, a pick-up
ion with energy E ≤ Esw must have been ionized at a distance (E/Esw)

3/4r.
The shell shrinks with increasing distance from the ionization location. The
outward flux of ions with thermal energies between E and Esw through a
shell with radius r must be equal to the integrated ionization rate between
(E/Esw)

4/3r and r,

Vsw

∫ Esw

E

dE ′n(E ′) =
(r0
r

)2

βionis

∫ r

(E/Esw)3/4r

dr′N(r′), (6.43)

where n(E)dE is the number density of particles with energy between E and
E + dE, and N(r) is the neutral density at r. Because a change in distance
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can be expressed as a change in energy, we now take the energy derivative

−Vswn(E) = −
(r0
r

)2

βionisN

((
E

E0

) 3
4

r

)

r
3

4

(
E

Esw

) 3
4
−1

1

Esw

,

Vswn(E) =
(r0
r

)2

βionis

3
4
r

Esw

N

((
E

E0

) 3
4

r

)(
E

Esw

) 3
4
−1

. (6.44)

We now need to transform from energy to velocity space to obtain f(v). We
have

∫
dE ′n(E ′) =

∫
d3v′f(v′), and hence

∫

dv′mv′n(
1

2
mv′2) =

∫ 2π

0

dϕ

∫ π

0

dϑ

∫

dv′f(v′)v′2 sinϑ,
∫

dv′mv′n(
1

2
mv′2) =

∫

dv′f(v′)4πv′2,

mv′n(
1

2
mv′

2

) = 4πv′2f(v′),

f(v) =
m

4πv
n(

1

2
mv2), (6.45)

for an isotropic distribution function. Combining equations 6.20 (neutral par-
ticle number density), 6.44 and 6.45, we can now easily find the velocity dis-
tribution function for pick-up ions. For the case where gravitation is balanced
by photon pressure (which is generally assumed to be a good approximation
for hydrogen), i. e.µ = 1, we obtain

f(v) =
3r20

8πV 4
swr

β

(
v

Vsw

)−3/2

N

((
v

Vsw

)3/2

r, ϑ

)

, v ≤ 1, (6.46)

which is the expression obtained by ? but corrected for a typographical error.
We have plotted f(v) for pick-up protons for various heliocentric radii for the
upwind direction in Figure 6.9. The x-axis is the conventional w

.
= v/vsw. In

this representation, freshly picked up ions are at w = 1, while lower w are
indicative of ions which were ionized at a location nearer to the Sun. The
influence of adiabatic cooling is evident, as is the strongly non-thermal nature
of these distribution functions.

Because the pick-up distributions have such large contribution at large w,
the contribution of pick-up ions to the total pressure is non negligible. We can
easily compute the pressure in a pick-up distribution, it is the second moment
of the distribution function,

p =

∫ vsw

0

d3 vv2f(v)

=
3

2
n∞vswβ

r20
r

∫ 1

0

dw w5/2e−
r20β

v∞
θ

sin θ
1
r
w−3/2

, (6.47)
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Figure 6.9: Pick-up proton velocity distribution functions for different helio-
centric locations in the upwind direction.
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where we have transformed v to w and to polar coordinates. Transforming
x = w−3/2, and using (Gradshteyn and Ryzhik , 1980, eq. 3.381.3)

∫ ∞

u

dx xν−1e−µx = µ−νΓ(ν, µu), (6.48)

where Γ(ν, µu) is the incomplete Γ function, we obtain

p = mpn∞vswβ
r20
r

(
r20β

v∞r

θ

sin θ

)7/3

Γ

(

−7/3,
r20β

v∞r

θ

sin θ

)

. (6.49)

We have plotted the pressure in pick-up protons versus heliocentric distance in
Figure 6.10. For computational purposes, it is better to get rid of the negative
first argument of the Γ function by iteratively using the functional relation

Γ(a+ 1, x) = aΓ(a, x) + xae−x. (6.50)

Pressure peaks at several astronomical units. The decrease beyond the max-
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Figure 6.10: Pick-up proton pressure in the upwind direction versus heliocen-
tric distance.

imum is not adiabatic initially, but drops much more slowly. However, the
thermal pressure in the solar wind decreases adiabatically all the way from the
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Sun except for some contribution by wave-heating or heating associated with
compressional regions. Burlaga et al. (1994) have investigated five pressure-
balanced structures in two merged interaction regions in the outer heliosphere
at about 35 AU. They found that the changes in magnetic pressure were bal-
anced by changes in the pick-up proton pressure. The observed thicknesses of
discontinuities were several times larger than at one AU, even when expressed
in units of the proton Larmor radius. However, expressed in units of pick-up
proton Larmor radius, the thicknesses are the same at 35 AU as at 1 AU,
further indicating the dominant role of pick-up ions in the outer heliosphere.
Richardson et al. (1995) and Gazis (1995) have both looked for the slow-down
of the solar wind that is expected as a consequence of the mass loading of the
solar wind with pick-up ions. While Richardson et al. (1995) find a 7% de-
crease in the solar wind speeds observed at Voyager 2 if compared with those
observed by IMP 8 at 1 AU, Gazis (1995) claims that only an upper limit can
be given based on observations by the Pioneer Venus Orbiter, Imp 8, Voyager
2, and Pioneer 10. There are considerable difficulties involved when trying to
measure the slow-down of the solar wind. The most important probably is the
strongly time varying and spatially non homogeneous nature of the solar wind.
Wang et al. (2000) have recently circumvented this difficulty by considering
the average solar wind speeds observed at Ulysses and at Voyager 2 during the
lign-up period between mid-1998 and mid-1999. They compared the measure-
ments at Voyagers heliocentric distance (near 60 AU) with model predictions
based on Ulysses measurements near 5 AU. Their simple, 1-dimensional MHD
code agreed well with the average observations when they included a pick-up
proton contribution to mass loading when considering a possible slow-down of
the solar wind. Without inclusion of pick-up ions, the comparison was not as
good. From their investigations, they inferred an interstellar neutral density
of 0.05 cm−3, leading to a ∼ 10% decrease in solar wind speed. We can com-
pare their observations to the simple model described in this chapter. For a
present-day neutral density of n∞ = 0.1 cm−3 we find a decrease of solar wind
speed of nearly 15% near 60 AU. We did not perform the calculations for the
case n∞ = 0.05 cm−3, obviously, the reduction in solar wind speed should be
less than 15% and should be compatible with the ∼ 10% inferred by Wang
et al. (2000).

Figure 6.10 also shows the pick-up proton pressure gradient. This quantity
plays an important role in the transport of particles in the heliosphere. It
peaks around 2 AU. The seemingly larger slope at smaller r is due to the
logarithmic scale of the plot.
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6.5 Inner-Source Pickup Ions

In situ measurements of pickup ions (PUI) exhibit a component that has nearly
thermalized with the solar wind. This implies an origin close to the Sun and
is generally ascribed to interaction of the solar wind with interplanetary dust
particles (IDPs).

Observations of singly-charged carbon ions in the outer heliosphere by the
Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses by Geiss et al.
(1994) marked the discovery of an “inner source” of pickup ions (PUIs). The
ions were believed to be due to the loss of the volatile elements C and O from
interstellar dust particles between 2 - 3 astronomical units (AU). Subsequent
work by Gloeckler et al. (2000), Schwadron et al. (2000), and Schwadron and
Geiss (2000) identified an inner source of PUIs in the inner heliosphere, located
between 10 - 50 solar radii from the Sun. The present paper deals with this
latter “inner source” for heliospheric PUIs.

Normal heavy solar wind ions are multiply charged as a result of their inter-
action with hot electrons on their way from the solar surface through the corona
into interplanetary space. Pickup ions are almost entirely singly charged and
have a non-thermal velocity distribution functions. In this work we will con-
sider only singly charged PUIs. Investigations of inner-source PUIs have lead
to two remarkable discoveries. Their composition is to a good approximation
solar, for instance, the Ne/Mg abundance ratio is about that of the average
solar wind. Second, the flux of inner-source PUIs is amazingly high compared
to the solar wind flux. Based on the flux of inner-source O+, the neutralizing
cross section per unit volume can be estimated to be Γ ≥ 1.3·10−17 cm−1, which
is almost two orders of magnitude larger than other typical values (Schwadron
et al., 2000). The origin of inner-source PUIs has been attributed interplane-
tary dust particles (IDPs) which have been saturated with solar wind. In that
view, dust particles trap and release solar wind particles (e, g. Gloeckler et al.,
2000). The net result is a neutralization of the solar wind.

? have proposed an alternative view in which inner-source pickup ions are
created by a population of very small dust particles in which the solar wind
is neutralized. It is capable of explaining the above mentioned observational
puzzles, but at the cost of introducing a “new” population of very small dust
particles.



Chapter 7

Turbulence

2014-04-09: Most (nearly all) corrections have been made. Remaining ones
are questionable. . .

7.1 Hydrodynamic Turbulence

On the one hand, the subject of turbulence is common-day experience. We all
know what coffee looks like when we poured some milk in it. It takes some time
until the milk has finally spread throughout the whole cup or mug. We know
smoke from fires first rises in a billowing manner but then splits up into more
and more patches or whifs of smoke until it too, is evenly distributed. We also
know it from the twinkling of stars in a clear night (and, as astronomers, are
bothered by the bad seeing). Turbulence is an important agent in mixing fluids
or air or even plasmas, which we shall all call fluids in this chapter. Turbulence
occurs on nearly all length scales in nature. It limits the speed with which our
body can supply our limbs with fresh blood, it determines the oxygen content
of the upper layers of water bodies by turbulent (eddy) diffusion, it is key to the
structure of the atmosphere. On Jupiter, turbulence results in the spectacular
belts. Turbulence is an important factor in the convective motions inside the
Earth’s highly viscous mantle region and contributes to the heating of the solar
chromosphere and maybe the corona. In the solar wind, turbulent motions are
seen as variations in the radio signals from distant quasars in the interplanetary
scintillation technique, similar flickering of radio souces is due to interstellar
turbulence. It plays a crucial role in star and planet formation on the scale of
molecular clouds. At even larger scales, in the early epoch following the Big
Bang, turbulence likely resulted in chaotic spatial patterns of mass or energy
concentrations which ultimately led to the formation of clusters of galaxies.
Thus, turbulence spans length scales from below milimeters to billions of light
years, or more than twentyfive orders of magnitude.

Obviously, such a ubiquitous phenomenon begs to be studied and under-
stood. Unfortunately, it defies a rigorous description. An anecdote about

125
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Figure 7.1: The air flow from the wing of this agricultural plane is made visible
by a technique that uses colored smoke rising from the ground. The swirl at the
wingtip traces the aircraft’s wake vortex, which exerts a powerful influence on
the flow field behind the plane. The vortex dissipates after some time, thereby
driving turbulence via a turbulent cascade. Source: Wikipedia/NASA-Langley
photo-ID EL-1996-00130.

Heisenberg recounts him answering the question, what he would ask God,
should he meet him with the words “When I meet God, I am going to ask
him two questions: Why relativity? And why turbulence? I really believe he
will have an answer for the first.” In other words, turbulence is not easy to
understand once we leave the more cursory descriptions that we are familiar
with.

Show why and that flows with equal Re have similar properties.

Given a fluid of density ρ, flowing at a speed V with typical length sale L,
and viscosity µ, there is just one dimensionless number which can be formed
with these quantities, the so-called Reynolds number, Re. It is defined by

Re
.
=
ρV L

µ
=
V L

ν
(7.1)
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Figure 7.2: The large-scale circulation can be seen very nicely in this image
(from APOD). Obviously, total angular momentum is conserved.
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fluid µ
Pa s

air 18.27·10−6

water 1.·10−3

blood 3-4·10−3

mercury 1.5·10−3

olive oil 0.08
corn syrup 1.4
honey 2’000 - 10’000
ketchup 50’000 - 100’000
peanut butter 250’000

Table 7.1: Approximate values for the dynamic viscosities of various fluids at
roughly room temperature.

where µ and ν are the dynamic and kinematic viscosities of the fluid, respec-
tively. The typical length scale could be, e.g., the diameter of a chimney or a
pipe or a blood vessel. Some typical numbers for viscosity for various fluids
are given in Table 7.1.

The nature of a flow is determined by its geometry, velocity, and the fluid’s
density and viscosity. Their combination into the Reynolds number is the
governing quantity. Typically, flows with small Reynolds numbers are laminar
and those with large Reynolds numbers are turbulent. At very low speeds,
the flow is laminar, this is also true for highly viscous fluids such as honey or
ketchup - have you ever tried to stir either fluid? At higher speeds, a transition
from laminar to turbulent flow sets in until a fully-developed turbulent flow is
established.

Consider the flow of a fluid through a pipe. For pipe flows, a Reynolds
number greater than 4000 signals turbulent flow, values between 2100 and
4000 are transitional between laminar and fluid, values below that describe
laminar flow. Consider various fluids flowing through a pipe of diameter 1cm.
The typical length scale is thus set at 1cm. With the density of water and its
viscosity, we see that flow speeds need to be kept below a few tens of cm/s for
the flow to remain laminar, this is what we have in the water pipes leading to
faucets. For drains, we have considerably larger diameters, typically several
cm, and the flow turns turbulent. This is an important transition. We don’t
want deposits from the walls of the pipes to the faucets to be in our water, so
we want laminar flows there, but we want deposits removed from drain pipes,
hence we want turbulent flows there.

Exercise 7.1 Go through similar considerations for blood in blood vessels and
ketchup being squeezed out of a bottle.
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Redo completely: continuity eq. for incompressible fluids has ~∇ρ = 0, etc.
see notes pp. 88 ff.

This dependence of the flow type on the dimensionless Reynolds number
is utilized to model flows over very large or very small bodies which can’t
easily be reproduced in a laboratory. For instance, scale models of commercial
airliners can be tested at correspondingly higher wind speeds, models of ships
or submarines can be tested with other fluids, etc.

Flows are described by the set of hydrodynamic equations consisting of
the continuitiy equation, the momentum equations, and the energy equation.
Depending on the viscosity of the fluid, the full Navier-Stokes equations need
to be considered (for viscous fluids), or only the Euler equations (for invis-
cid fluids). Let us first consider an incompressible viscous Newtonian fluid1.
Because it is incompressible, its density does not change, and hence the time
derivative in the continuity equation vanishes. Hence,

~∇ · ~u =
∂ui(~x)

∂xi
= 0. (7.2)

This can also be considered as an equation describing the conservation of
mass. Correspondingly, the equation of motion is the equation that describes
the conservation of momentum. For a fluid in steady state (stationary state)
it can be written as2

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν∇2ui. (7.3)

Now multtply by ρ and take the divergence of both sides. Because the diver-
gence of a gradient vanishes and ν and ρ are independent of ~x, we have

∇2p = − ∂2

∂xi∂xj
(ρuiuj) = − ∂2

∂xi∂xj
τij, (7.4)

where we have made use of the fact that the divergence of an incompressible
fluid vanishes. Basically, this expression tells us that changes in the pressure
will move around the fluid, induce stresses, and, by the Newtonian approxi-
mation, alter the velocity field. Note that we have the structure of a Poisson
equation with a source being given by the spatial variations of the stress tensor.
It is a non-linear differential equation for the fluid velocity.

If we allow for a compressible fluid, several changes appear. The continuity
equation is now

∂ρ

∂t
= −ρ0

∂ui
∂uj

(7.5)

1Fluids are called Newtonian if their stress tensors can be expressed in terms of gradients
in their velocity field. Most “normal” liquids are Newtonian, as are most astrophysical (and
heliophysical) plasmas. Blood, paint, aerosols, and emuslions are examples of non-Newtonian
fluids.

2Note that all expressions involving the stress tensor disappear for a Newtonian fluid.
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for a fluid at rest. Thus, spatial changes in velocity can alter the density of
the fluid. For an isothermal fluid, we have the equation of motion

∂ρui
∂t

+
∂τij
∂xj

= − ∂p

∂xi
= −c2s

∂ρ

∂xi
, (7.6)

which is reminiscent of a wave equation. Thus, we see that in incompressible
fluids, fluctuations in density will lead to a redistribution of energy in the fluid
via sound waves.

7.2 The Turbulent Cascade

Big whorls have smaller whorls
That feed on their velocity

And little whorls have lesser whorls
And so on to viscosity (in a molecular sense).

L. S. Richardson, (1922)

Explain what dissipation means
As elegantly summarized by Richardson, the idea of turbulence can be

understood as a cascade of turbulent eddies beginning at the largest scale and
ending at some scale where energy is dissipated. In fact, Richardson’s idea
of eddies feeding off eddies feeding off eddies . . . and so on to viscosity (see
Fig. 7.3) was picked up by Kolmogorov (1941) who extended this idea by two
crucial assumptions.

So far, all considerations about turbulence have been incompressible3 and
basically adiabatic. No consideration sofar has been made about how energy
is dissipated and injected into the fluid. However, the instabilities which are
set up by finite viscosity and boundary conditions will ultimately lead to some
form of dissipation which will tend to heat the fluid or increase its internal
energy at the cost of systematic motions or of kinetic energy. This was also
the state of affairs in turbulence studies until the late 1940s until Kolmogorov,
Heisenberg and von Weizsäcker introduced some elegant and very modern ideas
about self similarity into the field.

Obviously, the fluid does not move by itself and neither do its eddies just
materialize out of nowhere. They are driven by other systematic motions of
the fluid which in turn require energy to be stuck into the system. If this
energy is not to build up in the system, it must be dissipated somewhere.
The energy that is stuck ino the system will unfailingly lead to the formation
of some large eddies (always cancelling out their angular momentum so as to
conserve total angular momentum, see fig. 7.2). Because of the non-linear term

~v · ~∇~v in the governing Navier-Stokes equations, these large eddies will break

3or incomprehensible
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Figure 7.3: Large eddies feed smaller eddies which in turn feed smaller eddies,
. . . Note that the eddies are not space filling.

up into smaller ones of about half the scale length of the large addies. The
rate of breaking up into smaller eddies is high, on the order of ~v · ~∇ ≈ ~kv̄,
i.e., a period of time which is comparable to the turnover time of an eddy.
These smaller eddies again break up and feed smaller eddies, . . . and so on to
viscosity.

So let’s stand back and consider what we have so far. We see that energy
is being fed into the system at a length scale L and at a rate ǫ. The rate
at which energy is being fed into the system must be matched by the rate at
which energy is dissipated in a steady state system, so the energy dissipation
rate is also ǫ. In other words, the energy cascade in a homogeneous and
isotropic turbulent system in steady state must be determined by the rate at
which energy is being fed into the system at the largest scale length, L. The
fluid of density ρ which is organized at a scale length L is characterized by its
kinematic viscosity ν = µ/ρ where µ is its dynamic viscosity. Consider the
units of energy dissipation and kinematic viscosity,

[ǫ] =
energy

time ·mass
=

m2

s3
and [ν] =

Pa · s
[density]

=
kg m s m3

(m s)2kg
=

m2

s
,

which is the specific energy dissipation rate of the system. With these two
quantities, kinematic viscosity, ν, and specific energy dissipation rate, ǫ, there
is exactly one length scale which can be established,

ld =

(
ν3

ǫ

)1/4

, (7.7)

which is called the Kolmogorov or dissipation scale. It is the scale at which
energy is dissipated and hence we now have the largest scale, L and the smallest
relevant scale, ld, of the system. The typical time scale for dissipating the
energy is similarly derived as

τd =
(ν

ǫ

)1/2

, (7.8)

and gives the characteristic time scale for the dissipation of energy by eddies of
size ld. Finally, a typical speed of the system at these smallest scales is given
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by

vd = (νǫ)1/4 , which is also vd =
ld
τd
. (7.9)

So we have now found the length scale at which energy is dissipated, the
Kolmogorov or dissipation scale, ld, and we know the length scale at which
energy is injected, L. These two scales normally differ by several orders of
magnitude and the range inbetween is called the inertial range. Consider a
cup of tea that is being stirred. Its diameter shall be 5cm, we assume the
density of tea to be that of water for simplicity (no sugar and milk added).
The tea is stirred such that the spoon circles the cup once every second. Then
the rate at which energy is being stuck into the system can be approximated
by the friction force on the spoon multiplied by the path length travelled per
unit time, i.e., the spoons speed,

ǫ ≈ 6πηv2r ≈ 6πη(2πR)2r ≈ 5 · 10−6W,

where we have assumed a spherical spoon of radius 1cm for simplicity. The
dynamic viscosity, η = µ for tea (water) is approximately 10−6 m2/s, and hence
the dissipation length is on the order of

ld ≈
(

10−18

5 · 10−6

)1/4

≈ 0.68mm.

The energy is dissipated at a scale slightly smaller than one milimeter. Note
that the estimate of the energy input rate is very crude and likely to be too
low which would lead to a smaller dissipation scale. The largest and smallest
length scales here differ by two orders of magnitude.

The energy in a whorl or eddy can be described as follows4. Let the kinetic
energy density with wave numbers between k and k + dk be ρI(k)dk. Then
we have

ρv2

2
=
ρ

2

∫

I(k)dk (7.10)

for the total kinetic energy density. The velocity, vk, of the eddies in the range
dk ∼ k of wave numbers is

v2k = I(k)dk −→ v2k = I(k)k (7.11)

Fig. 7.4 shows the general idea of the energy cascade from larger eddies to
smaller ones. The wave number (roughly the inverse of the eddy size) increases
from left to right. Now consider the energy in the range between

√
δk and

k/
√
δ, where δ is some number δ ≤ 1, and we will let δ −→ 1 in the end.

4We will be following the arguments given in Kulsrud (2005).
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√
δk k k/

√
δ k/δ

Figure 7.4: Energy transfer from one scale of eddies to the next smaller scale.
For these considerations, δ ≤ 1.

Energy is transferred into this range from eddies in the range between δ3/2k
and

√
δk at a rate given by the turnover rate of eddies of that larger size,

turnover rate(δk) = δkvδk. (7.12)

In the case of our coffee mug we have, for δ = 1,

turnover rate(δk) =
1

R
· 2πR
τ

= 2π/τ, i.e., 2π per second. (7.13)

The smaller eddies which receive this energy will pass part of it on to the next
smaller ones at their turnover rate kvk. However, they will also loose some
energy by viscous dissipation at a rate k2ν, where ν is the kinematic viscosity.

Let us again consider this viscous loss term in terms of the coffee mug.

k2ν ≈ 1

R2
· 10−3 =

(
1

0.025

)2

· 10−3 =

(
1

2.5

)2

· 101 ≈ 1.

We can easily see that this viscous dissipation will get more important as the
size of the eddies decreases because it goes as with k2 ∼ 1/R2.

We can now put together the energy balance equation for a step k in the
cascade:

∂(kI)

∂t
= (δkvδk) [δkI(δk)]− (kvk) [kI(k)]− k2νkI(k), (7.14)

where the first term on the right is the energy input, the second is the energy
being passed on to the next smaller scale (larger k) and the last term is the
energy lost to dissipation (energy in the eddy times dissipation rate). Here we
come to one of the crucial assumptions about the cascade made by Kolmogorov
(1941). He argued that turbulence spectra appear to be universal in as much
as they do not depend on the exact nature of the fluid in which they occur.
Therefore, the spectrum should be independent of the viscosity of the fluid.
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It should also be scale-invariant in the inertial range. We will see where the
independence of viscosity comes in in a moment.

Next we insert v2k = I(k)k from eq. 7.11 and consider the first two terms on
the right as part of a logarithmic derivative, d/d ln k with δ −→ 1 (Kulsrud ,
2005), to obtain5

∂(kI)

∂t
= − ∂

∂ ln k

(

k
5
2 I

3
2

)

− k3νI. (7.15)

For stationary turbulence, the left-hand side, and hence the right-hand side,
vanish, thus reducing the partial differential equation to an ordinary differential
equation. Now we want to solve for I, and introduce a new viable, y,

y
.
= k

5
2 I

3
2 . (7.16)

Using
∂y

∂ ln k
=
∂y

∂k

∂k

∂ ln k
=
∂y

∂k
k (7.17)

we obtain for eq. 7.15 in stationary form

dy

dk
= −νk1/3y2/3 (7.18)

where we have cancelled a k. Eq. 7.18 can now be integrated

y1/3 =
(
k5/2I3/2

)1/3
= C − ν

1

4
k4/3. (7.19)

For large eddies with k = k0 = 2π/L and where v0 is the turbulent velocity,
the boundary condition is is given by

k0I(k0) = v20. (7.20)

Because we can negelct the viscous term at large length scales, this determines
the integration constant, C = k

1/3
0 v0. Note that at large scales we can neglect

the viscous term which simplifies α. Inserting C into eq. 7.19 we can solve it
for I

I =
k
2/3
0 v20
k5/3

[

1−
(
k

k0

)4/3
k0ν

4v0

]2

=
k
2/3
0 v20
k5/3

[

1−
(
k

k0

)4/3
1

4Re

]2

. (7.21)

The square bracket vanishes at some scale kmax = k0(4Re)
3/4 which is much

smaller than the large scale k0, namely by a factor (4Re)3/4. All energy is

5The logarithmic derivative is defined by

ddf

d ln k

.
= lim

δ−→1

f(k)− f(δk)

δ
.
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I(k) ∝ k−5/3

Figure 7.5: The spectral behavior of turbulence is different in the injection,
intertial, and dissipation ranges. In the inertial range, turbulence is nearly
always observed to exhibit a Kolmogorov spectrum, I ∝ k−5/3.

dissipated here. At larger scales, for k ≪ kmax, the square bracket is essentially
unity, and we retrieve Kolmogorov’s original result,

I =
k
2/3
0 v20
k5/3

, (7.22)

the well-known k−5/3 power law. Interestingly, nearly all turbulence observed
in nature shows this behavior! Well, actually it was this observation that led
Kolmogorov (and later, but independently, Heisenberg and von Weizsäcker) to
this result. Figure 7.5 summarizes the situation.

7.3 Magneto-Hydrodynamic Turbulence

The solar wind is an excellent and unique laboratory for turbulence in colli-
sionless plasmas with one disadvantage - we normally have only single-point
measurements of the occuring phenomena. Studies of the solar wind have
shown a mixture of two competing models of turbulence in this supersonic
flow.

On the one hand, the first observations of solar wind turbulence appeared
to suggest turbulence driven by differential motions in solar wind streams. The
accompanying instabilities driven by velocity shears produce long-wavelength
Alfvén waves which cascade to shorter wave lengths until they can dissipate
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by proton-cyclotron damping. This process results in a smoothing out of dif-
ferential motions in the heliosphere and a heating of the solar wind plasma.

The other view popularized after the observations by Belcher and Davis
Jr. (1971) of the highly correlated fluctuations between velocity and magnetic-
field vectors, stated that the observed fluctuations were merely due to outward
propagating Alfvén waves. Belcher and Davis Jr. observed that the purest
Alfvén waves occured in high-speed streams and their trailing edges. Figure 7.6
shows their measurements of a high-speed stream with Mariner 5 in 1967. They

Figure 7.6: Thirtytwo hours of data showing the presence of Alfvén waves in
a high-speed stream. The upper six curves show 5.04-minute bulk velocity
(diagonal lines) and magnetic field components (step lines). Units are km/s
for velocity averages and gammas (1 nT). From Belcher and Davis Jr. (1971).

suggested that the Alfvén waves were mainly remnants of waves generated at
or near the Sun. They were postulated to be remnants of the heating of
solar wind streams by wave damping. The highest level of wave activity was
observed in compression regions at the leading edges of high-speed streams.
This was interpreted as due to amplification of the waves as they were swept
into those regions as well as freshly generated waves at those locations. The
variation of wave activity across a range of solar wind conditions is shown in
Fig. 7.7.

The difficulty with both isolated views - turbulence generated by shear
motions and solar-origin Alfvén waves - is that most waves were found to
be propagating outward, but with an inward-propagating population of waves
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Figure 7.7: Sequence of e+ and e− spectra across the transition from slow wind
to a high-speed stream. From Tu and Marsch (1995).
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Figure 7.8: Solar wind streams and speed variations observed by Helios 2 in
1976 between 1 AU and 0.29 AU (perihelion). Four subsequent solar rotations
are shown with speed displayed vs. Carrington longitude. The blow-up shows
the detailed structure of the large corotating high-speed stream and clearly
exhibits Alfvénic fluctuations. From Marsch (1991b).

which was also present in various proportions. The first view could not explain
the predominance of outward-propagating waves while the second could not
explain the inward-propagating ones.

Today, we understand the ubiquitous presence of Alfvén waves in the solar
wind as a consequence of outward-propagating Alfvén waves driven by photo-
spheric motions at the Sun as well as Alfvén waves produced by shear between
differentially-streaming solar wind streams. The latter waves are equally dis-
tributed into outward and inward-propagating waves. Figure 7.8 shows obser-
vations of the solar wind by Helios 2 in 1976, when the spacecraft encountered
a corotating high-speed stream four successive times on its way from aphelion
to perihelion. The lowest panel shows the perihelion observations of twelve
days as a blow-up. Alfvénic fluctuations are easily seen.

However, this view still fails to fully explain the turbulent phenomena in
the solar wind. How much of it is due to outward-convected structures which
flow by the observer? What is the spectrum of such structures? How, if at all,
can they be discerned from propagating waves? The difficulty with all these
studies lies in the limitation to single-point measurements which are all that
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is possible with single spacecraft.
Table 7.2 gives an overview of the timescales acting in the heliospere and

their relation to turbulence.

Phenomenon Frequency Time Speed Turbulence
[s−1] [days] [km/s]

Solar rotation Ω⊙ = 2.7× 10−6 27 ω⊙R⊙ ≈ 2 Generation
ν⊙ = 4.3× 10−7

Solar wind νexp ∼ 2 – 6 Vsw ≈ Generation
expansion 5.9− 1.9× 10−6 300 - 900
Alfvén waves νA ≈ 2.8× 10−4 1/24 VA ≈ 50 inertial
(λA ≈ 10−3 AU) (at 1 AU) range
Ion-cyclotron Ωp ≈ 6.3 1.2× 10−5 Va ≈ 50 dissipation
waves ≈ 50 km νp ≈ 1 1 s at 1 AU

Table 7.2: Typical timescales in the solar wind plasma at 1 AU. From Marsch
(1991b).

That Alfvén waves are indeed present in the solar wind was shown by
? again using Helios data. Fig. 7.9 shows their results of in-situ solar wind
measurements of differential streaming between protons and alpha particles.
The top panel shows proton (solid line) and alpha-particle (dots) mean speeds.
Obviously, the alpha particles stream faster than the protons. The next panel
relates this differential velocity to the Alfvén speed. The two are nearly equal
and certainly of comparable magnitude. The following panels shows the dot
product ~B · ∆~Vαp which is close to unity most of the time. This means that

∆~Vαp and ~B are nearly co-aligned. The lower panels show flow angles of
protons and alpha particles as well as the magnetic field angles. Obviously
the alpa particles closely follow the magnetic field fluctuations, but not the
protons. This was interpreted as alpha particles “surfing” the Alfvén waves in
the solar wind.

In the following, we will show how convected structures can be discerned
from propagating waves and how waves can be identified in the solar wind.
Basically, this boils down to understanding the two components of turbu-
lence observed in the solar wind - so-called 2-d turbulence and so-called slab
turbulence. 2-d turbulence is associated with convected structures and slab
turbulence with wave activity. We will closely follow the review by Tu and
Marsch (1995) and references therein.

Insert beams on bulk here, i.e., Marsch et al. results

7.3.1 Tools for Describing Turbulence
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Figure 7.9: Alpha-particle-proton differential streaming in the solar wind as
observed by Helios 2 at 0.75 AU in 1976. From top: proton (solid) and alpha
(dots) mean speeds, differential speed, ∆Vαp, (solid line) and Alfvén speed

(dots). The next lower panel shows the dot product, ~B∆̇~Vαp. The lower
panels show the flow angles of protons and alpha particles, as well as magnetic
field angles. From Marsch (1991a).
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need to define two-point correlation function here.
The mathematical description of turbulence relies on some tools which we

prepare in this subsection. The basic idea is to divide up quantities into a
slowly or systematically varying and a more rapidly fluctuating part. The sys-
tematic variation may be slow in time or in space, it does not matter according
to Talyor’s hypothesis. This states that for fully developed turbulence,
averages taken over a large region in space around one point or over
a long period of time at the same point will lead to the same average
(as long as the spatial extent and time period are chosen long enough but not
too long, i.e., appropriately). Thus, assume that we separate the velocity field
into a mean (average in the above sense) and a fluctuating part

vi(~x) = Ui(~x) + ui(~x), (7.23)

where
〈vi(~x)〉 = Ui(~x); 〈ui(~x)〉 = 0;

〈
u2i (~x)

〉
6= 0. (7.24)

Next we define the two-point correlation tensor, Rij(~r), which is the sta-
tistical average over two (velocity) components i and j,

〈vi(~x)vj (~x′)〉 = Ui(~x)Uj(~x
′) +Rij(~r), (7.25)

where ~r = ±(~x′ − ~x). Rij(~r) is a crucial quantity in the study of turbulence.
It is related to the specific energy density (energy density per mass) of the
turbulent velocity field and also describes transport processes in turbulent
media.

~r

~x
~u(~x)

~u(~x′)

Figure 7.10: The two-point correlation function averages over the volumes of
the small spheres with radius δ.

Consider the sketch in Fig. 7.10 which helps visualize the two-point cor-
relation function. A point ~x is surrounded by a sphere with radius ~r. If we
average over the product of all velocity vectors ~u(~x′) with ~u(~x) we have the
two-point correlation function. The larger |~r|, the more we expect that every
combination of ~u(~x) · ~u(~x′) will average out with another ~u(~x) · ~u(~x′′) at some
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other location ~x′′. On the other hand, if we stay close to ~x, we expect less
cancellation because there may be more similarities in the velocity field. If we
go to infinity with the surface, we expect the velocity fluctuations there to be
totally uncorrelated with the velocity fluctuation at ~x, and hence, we expect
Rij(r → ∞) to vanish. At the point ~x itself, we expect maximum correla-
tion. The crucial point here is that the correlation tensor in fully developed
(isotropic) turbulence only depends on |~r|, but not on position, ~x.

From these considerations, we can see that we expect R(r) to be an even
function in r and hence, R(r) will have only even powers of r in any analytic
expression for it. Moreover, at r = 0 we expect a maximum, and hence, there
the first derivative will vanish. Its second derivative will be negative.

If we further assume that the correlation tensor Rij(~r) is normalizable we
can define its Fourier transform,

Φij(~k)
.
=

1

(2π)3

∫

Rij(~r)e
−i~k·~rd~r. (7.26)

7.3.2 Tools for Data Analysis

According to Taylor’s hypothesis, time averages of measurements in the solar
wind are equivalent to spatial averages and thus to ensemble averages. Thus,
they are insensitive to the local origin in time. Therefore, the mean of a time
series B(t),

B0
.
= 〈B(t)〉 (7.27)

is independent of time. We define the two-point correlation function by

R(τ)
.
= 〈δB(t)δB(t+ τ)〉 (7.28)

where
δB

.
= B −B0.

The angled parenthesis (“bra and ket”) are used to denote ensemble averaging.
In data analysis, it is calculated by time averaging over a time interval

〈A〉 .= 1

T

∫ T

0

A(t)dt (7.29)

where A(t) stands for some solar wind quantity, e.g., B(t) or δB(t) or δB(t+τ).
We make one important assumption, namely that if we average over long
enough periods, then the values of B0 and R(τ) will not vary strongly anymore.
Obviously, if the averaging period T is too short, this can not be true, if it is
too long, then solar wind structure may begin to influence the values. This
assumption has been tested, the result is that one needs to average over roughly
5-10 Tc, where Tc is the correlation time defined by

Tc
.
=

∫ ∞

0

dτR(τ)/R0 (7.30)
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where R(0) is the two-point correlation function for zero time lag. If according
time averages are used, the values obtained for B0 and R(τ) are believed to be
accurate with ony small errors.

Taylor’s hypothesis (see page 141) in the MHD-case is given by

〈B(~x, t)B(~x+ ~r, t)〉 = 〈B(~x, t)B(~x, t+ τ)〉 , (7.31)

where ~r = −Vswτ~ew. Vsw is mean solar wind speed and ~esw is the unit vector in
the direction of the solar wind which is approximately in the radial direction
from the Sun. The negative sign is needed because at later times (τ > 0)
plasma is seen which was closer to the Sun a time τ earlier. Under this as-
sumption the frequency ω in the spacecraft frame and the wave number k are
related by

k = ω/Vsw.

This is only valid if the separation r is less than the large-scale L over which
the solar wind changes its nature, i.e., r has to be less than, e.g., the extent
of a high-speed stream. Moreover, r also has to be small enough so that any
fluctuation which may have developed has not had much time to change and
it is simply convected by the spacecraft. This requires that the transit time of
fluctuations is considerably smaller than the characteristic dynamical evolution
time for fluctuations. For Alfvén waves, this means

Vsw ≫ VA. (7.32)

This is usually guaranteed in the super-Alfvénic solar wind. However, this
is by no means always the case. Let us consider fully developed turbulence.
Then the evoltion time can be estimated by the eddy turnover time

τk =
1

bkk
(7.33)

where bk is the Fourier amplitude at wave number k of the magnetic field
measured in units of speed,

bk =
δB√
µ0ρ

(7.34)

Then this condition can be writen more precisely as

Vsw
VA

≫ 2π

(
δB

B0

)

(7.35)

where VA is the Alfvén speed based on the mean field, B0, and δB represents
the rms magnetic field contribution of the eddy in question. At 1 AU Vsw/VA ≈
10 and δB/B0 is generally lower than 0.5, so the assumption above is valid.
However, for low-Mach-number situations which do occur in the solar wind,
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or in the heliosheath, this assumption is not necessarily satisfied anymore and
the phase speed of the Alfvén waves needs to be taken into account.

The procedures outlined above needs to be applied to the measured data.
The fundamental measurement and their derived quantities are thus,

~V =
〈

~V
〉

+ δ~V , (7.36)

~B =
〈

~B
〉

+ δ ~B. (7.37)

From these quantities their correlation functions, correlation times and the
corresponding frequency spectra can be calculated.

One normally uses the rugged invariants of MHD,

E =
1

2

(
V 2 + V 2

A

)
, energy (7.38)

Hc =
〈

~V · ~B
〉

, cross helicity (7.39)

Hm =
〈

~A · ~B
〉

, magnetic helicity (7.40)

where ~A is the magnetic vector potential ~∇ × ~A = ~B. The integrals of these
quantities over the plasma-containing region are the invariants of the ideal
MHD equations, i.e., they are conserved for vanishing magnetic diffusivity
(infinite conductivity) and for vanishing kinematic viscosity, ν = 0. Often it
is more convenient to use the normalized cross helicity,

σc = 2Hc/E (7.41)

which more properly describes the correlation between ~V and ~B and is physi-
cally more relevant as a ratio of two rugged invariants.

7.4 Elsässer Variables

The observation that Alfvén waves are mainly outward propagating in the so-
lar wind, especially in high-speed streams, can be seen with the normalized
cross-helicity. It describes the ratio of inward and outward-propagating Alfvén
waves. However, as we believe that these waves have different sources, mea-
suring only their relative importance is not sufficient. An appropriate way to
measure both waves separately was introduced by Elsässer (1950). Following
Tu and Marsch (1995) we define the Elsässer-variables as

~Z± .
= ~V ′ ± ~V ′

A, (7.42)

where ~V ′ is the proton velocity in the inertial frame of reference, ~V ′
A = ~B′/

√
µ0ρ′

is the Alfvén velocity and ~B′ is the magnetic field vector, ρ′ the proton den-
sity. The primed symbols ~V ′, ~B′, and ρ′ denote the instantaneous measured
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values and are obtained directly from the high-resolution data. The Elsässer
variables measure outward propagating waves (the ’+’ component) and inward
propagating waves (the ’−’ component). Time averaging eq. 7.42 we obtain
the decomposition

~Z± = ~Z±
0 ± δ ~Z± (7.43)

where

~Z±
0 =

〈

~Z±
〉

= ~V ± ~VA, (7.44)

~V =
〈

~V ′
〉

, (7.45)

~VA = 〈V ′
A〉 , and (7.46)

δ ~Z± = δ~V ± δ~VA. (7.47)

The mean field is ~B0 =
〈

~B′
〉

. To simplify data analysis, the following conven-

tion is used. If the radial component of ~B0 is positive (pointing away from the

Sun), one uses − ~B′ instead of ~B′ to ensure that the sense of propagation of
~Z± does not change in dependence of the magnetic field polarity, i.e., across
magnetic sector boundaries.

7.4.1 Power Spectra

The spectral properties of solar wind turblence or waves in the solar wind can
be obtained by the usual spectral methods, i.e., using (Fast) Fourier transforms
of the variables introduced above. Defining

δZ±
j,k

.
=

1

2π

∫

dxδZ±
j e

−ikx (7.48)

where δZ±
j is the j component of δ ~Z± and j = x, y, z. With this definition

we can now find the power spectra of the δ ~Z± fluctuations (outward- and
inward-propagating Alfven waves),

e±j (fk) =
2∆T

n
δZ±

j,k ·
(
δ±j,k
)∗
. (7.49)

n is the number of data points, ∆T the time interval between samples, and fk
is the frequency determined by

fk =
k

n∆T
, for k = 0,1,2,3,. . .n/2. (7.50)

Furthermore, the “coincident spectrum” and the “quadrature spectrum” need
to be calculated,

Cj(fk)− iQj(fk)
.
=

2∆T

n

(
δZ+

j,k

)∗
δZ−

j,k. (7.51)
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All relevant spectra can now be calculated with e±j (fk), Cj(fk), and Qj(fk).

The specific energy spectrum of δ ~Z± is

e±(fk)
.
=

1

2

∑

j=x,y,z

e±j (fk). (7.52)

The total energy spectrum and the cross-helicity spectrum are

e(fk) =
1

2

(
e+(fk) + e−(fk)

)
, (7.53)

ec(fk) =
1

2

(
e+(fk)− e−(fk)

)
. (7.54)

The normalized cross-helicity spectrum is just the above divided by the total
energy spectrum,

σc(fk)
.
=
ec(fk)

e(fk)
(7.55)

and the “Elsässer ratio”

rE(fk)
.
=
e−(fk)

e+(fk)
. (7.56)

The residual energy or the symmetric part of the cross-correlatoion spectrum
is given by

eR(fk)
.
=

1

2

∑

j

Cj(fk) (7.57)

and the corresponding anti-symmetric part is given by the imaginary part
(quadrature spectrum),

eS(fk)
.
=

1

2

∑

j

Qj(fk). (7.58)

The corresponding normalized spectra are

σR(fk)
.
=
eR(fk)

e(fk)
and σC(fk)

.
=
eC(fk)

e(fk)
. (7.59)

The Alfvén ratio spectrum is given by

rA(fk)
.
=

1 + σR(fk)

1− σR(fk)
(7.60)

and for the components it can be given as

rA,j(fk)
.
=

1
2

(
e+j (fk) + e−j (fk)

)
+ Cj

1
2

(
e+j (fk) + e−j (fk)

)
− Cj

(7.61)
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~M1

~M2

~M3

Figure 7.11: The variance ellipsoid is spanned by the eigenvectors, ~M1, ~M2, and
~M3 of the fluctuation tensor Tij. The corresponding eigenvalues, λ1 ≥ λ2 ≥ λ3,
quantify the anisotropy of the fluctuations.

This gives the ratios between kinetic energy and magnetic energy in the three
components, j = x, y, z.

Information about the anisotropy of fluctuations is easily obtained by con-
sidering the minimum-variance directions (eigenvectors) of the real symmetric
fluctuation tensor

Tij
.
= 〈δBiδBj〉 . (7.62)

Again, i, j = x, y, z. The tensor Tij has eigenvalues λ1 ≥ λ2 ≥ λ3 and

the corresponding eigenvectors ~M1, ~M2, and ~M3 define the principal axes of
the variance ellipsoid. Figure 7.11 shows such an ellipsoid. The eigenvector
~M1 points along the direction with maximum variability, ~M3 along the direc-
tion with minimum variability, and ~M2 completes the right-hand system. If
λ3/λ2 ≪ 1, and λ2 ∼ λ1, the variations (fluctuations) lie mainly in a plane

perpendicular to ~M3. If λ3 ≫ λ2 and λ1, the fluctuations are oriented primar-
ily along the direction of ~M3. If λ3 = λ2 = λ1, the ellipsoid is a sphere, i.e.,
the fluctuations are equally probable in all directions, in her words, they are
isotropic.

7.5 Radial Evolution of Fluctuations

Do WKB. . .
The fluctuations in the solar wind evolve with time or heliocentric distance.

This can be seen already in Fig. 7.8, which shows that the largest fluctuations
are seen close to the Sun. It can be seen better in Fig. 7.5 which shows e+ (solid
line) and e− (dotted line) spectra for a high-speed stream (right panel) and
slow wind (left panel) at three heliocentric distances. Outward-propagating
fluctuations dominate in high-speed streams. However, they appear to be
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damped with increasing distance from the Sun. Fluctuations appear to grow
the closer Helios approached the Sun. This can be understood in the picture
of evolving turbulence. The Alfvén waves generated at the Sun evolve through
a turbulent cascade until they dissipate. Th takes some time which is mapped
to heliocentric distance by the radial motion of the solar wind away from the
Sun. This is also borne out by the results presented in Table 7.3 and Fig. 7.5
which shows the radial evolution of the Alfvéncity ratio for high-speed streams
(right panel) and slow wind (left panel).

0.3 AU 1 AU 2 AU >8 AU

δ ~B Small scale Dissip. Intermed. “WKB” “WBK”
Large scale “WKB” Intermed. Intermed. Saturated

rA small scale ≈ 1 0.5 0.5 0.5
large scale 5 3 2 0.5
large scale
transverse ≈ 1 0.6 0.5 0.5

σc small scale 0.8 0.4 0.3 ≈ 0
large scale 0.5 ≈ 0 ≈ 0 ≈ 0

λ2+λ3

λ1
δ ~B small scale 5:1 4:1 3:1 3:1

δ~V 3:1 3:1 3:1 3:1
δρ/ρ small scale 0.1 0.1 0.1 0.1

Table 7.3: Radial evolution of turbulence parameters between 0.3 AU and
beyond 8 AU. After Tu and Marsch (1995) who cite Roberts (1992).

The data presentedin Tab. 7.3 are a mixture of data from the Helios and
Voyager missions and, therefore, need to interpreted carefully. For instance,
the time difference between the 0.3 AU studies with Helios and the 20 AU stud-
ies (beyond 8 AU) with Voyager is seven years. While it is widely believed that
solar activity does not strongly influence the basi behavior of the probabilitiy
distribution functions of the various turbulence parameters presented in Ta-
ble 7.3, this is by no means certain. As we only have single-point measurements
available at different times, it is impossible to discern between temporal and
spatial variations. For instance, it could well be that we are over-interpreting
data acquired at different locations and different instruments at different times.
However, both Helios and Voyager were two-spacecraft missions. The Helios
data has been investigated for such effects and the probybility distributions
functions of the measurements by the two spacecraft are very similar. There-
fore, we believe that the results presented in Table 7.3 are indeed valid and
representative of turbulence in the heliosphere. The data presented here are
based on our-averaged data and the relevant quantities have been averaged
over 30 to 100 days to average out the solar rotation period. The term “small”
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Figure 7.12: Power spectra of e+ (solid line) and e− (dotted line) for slow
wind (left-hand panel) and high-speed streams (right-hand panel) for various
distances. From Tu and Marsch (1995).
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Figure 7.13: Radial dependence of the Alfvénicity ratio, rA for slow wind
(left-hand panels) and high-speed streams (right-hand panels). From Tu and
Marsch (1995).
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is used for scales of 0.1 AU or less, implying a period of 10 hours or less in
the spacecraft frame. “Large” scales implies scales above 0.1 AU to about 1
AU. “WKB” define! means δB ≈ r−3/2, saturated δB ≈ B0, and ”intermed”
refers to a scale intermediate between these two.

7.6 Nature and Origin of Incompressible MHD

Fluctuations

The radial evolution of rA shown in Tab. 7.3 is somewhat puzzling. It can be
shown that the Alfvén ratio spectrum is given by

rA(fk) =
eV (fk)

eVA
(fk)

, (7.63)

were eV (fk) and eVA
(fk) are the spectra of the trace of the correlation tensors

of the velocity and magnetic field vectors. If all turbulence were Alfvénic,
we would expect rA to remain constant at unity. So observations show that
there must be some non-Alfvénic contribution to turbulence in the solar wind.
Nevertheless, the radial decline of rA remains a puzzle. Simply adding other,
non-Alfvénic wave modes does not decrease the predominance of magnetic en-
ergy, as there is an equipartition between kinetic and potenital energy in all
other wave modes. There potential energy is magnetic energy plus something
else. So the decrease of rA implies that the magnetic contribution increases
or the kinetic contribution decreases. But the ratio of the kinetic contribu-
tion to magnetic can’t decrease if there’s an equipartition between kinetic and
potential energy. Thus, adding other wave modes can’t solve the puzzle.

The observed dominance of magnetic energy can’t be understood with
MHD turbulence theory either (Tu and Marsch, 1995).

Adding compressive effects does not help either. Compression will tend
to enhance the magnetic fluctuation energy. Moreover, the radial dependence
of rA is most prominent in high-speed streams which have only low levels of
compressible fluctuations.

A first hint to the origin of the radial dependence of rA came from Helios
observations of incompressible structures which are convected by past the ob-
server. Figures 7.14 and 7.15 show such data. Density fluctuations were very
small as was rA and σC . The power spectra of e+, e−, and eV and eB have
slopes close to -5/3. At the same time there is no noteable compression during
this time period. The small compressible fluctuations are pressure balanced.
The magnetic field was nearly perpendicular to ~er which is normally the case
at large heliocentric distances. The bottom panels of Fig. 7.15 shows that
both σC and rA were close to zero for this time period. Fluctuations with zero
σC and rA it can be considered a special kind of magnetic structure which is
composed of directional changes of the magnetic field vector. These directional
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changes need to fulfill δ ~B · ~B = 0, i.e., they need to be perpendicular to the
ambient magnetic field. ~V needs to be constant, as are B, np, and T . This
kind of fluctuation obeys the MHD equations and is called Magnetic Field
Directional Turning (MFDT). If such structures are convected by the so-
lar wind the result in magnetic fluctuations with δV = 0 and hence σC = 0
and rA = 0. This is, of course, an idealized picture of such fluctations. In
reality, δ~V and rA may not be exactly zero. A more general situation is the
case where ~B · δ ~B = 0 and ~B · δ~V = 0 and with total pressure balance, i.e.,
δPT = 0. This kind of structures are called Tangential Turnings (TTs)

which support perpendicular fluctuations of δ ~B, δ~V , δn, δB, and δT . Such
incompressible fluctuations are actually convective structures which are non
propagating. They are quasi-static or evolve slowly in the plasma frame of
reference.

Figure 7.14: Ten hours of Helios 2 data showing nearly incompressible fluctu-
ations in ~B (solid lines in bottom three panels) and ~V (dotted lines in bottom
three panels) components. The bulk speed did not vary much (top panel) and
the plasma exhibited very little compression regions as seen from the com-
pressibility factor, fC (second panel from top). From Tu and Marsch (1995).
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Figure 7.15: top left panel: Spectra of e+ (solid) and e− (dotted). Top right

panel: spectra of the trace of the correlation tensor of δ~VA, e ~B (dotted) and

of the correlation tensor of δ~V , e~V (solid line) for the time period studied in
Fig. 7.14. The bottom panels show the spectra of the normalized cross helicity
σC and the Alfvén ratio, rA. From Tu and Marsch (1995).
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The planar magnetic structures (PMS) found by Nakagawa et al. (1989)
and Nakagawa (1993) are special TTs in which the magnetic field vecors all lie
in parallel planes but a re highly variable in direction and magnitude within
those planes. Such incompressible structures are ubiquitous in the solar wind
and are an important source of turbulence in the spacecraft frame of reference.
This 2-d turbulence is quasi-static or evolves only slowly in the plasma frame
of reference.

Figure 7.16: Illustration of Magnetic Field Directional Turnings (MFDTs) or
Planar Magnetic Structures (PMS). From Nakagawa et al. (1989) and Naka-
gawa (1993).

Thus, it appears that incompressible structures need to be included in
the description of solar wind fluctuations. They allow us to understand the
radial evolution of σC and rA. Since MFDTs are incompressible structures,
they are likely to coexist with Alfvénic fluctuations in high-speed streams. Tu
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and Marsch (1991) suggested that solar wind fluctuations consist of mainly
two components, Alvén waves of coronal origin, and inompressible structures
convected by the observer. In addition, there can be some locally generated
Alfvén waves (in- and outward propagating), e.g., by the Kelvin-Helmholtz
instability. Now the Alfvén waves damp and dissipate in a turbulent cascade,
while the convected, quasi-static incompressible fluctuations do not. Together,
this results in a decrease of rA and σC with increasing heliocentric distance.

Figure 7.17: Explanation for the radial dependence of rA and σC , from Tu and
Marsch (1992).

Figure 7.17 shows a sketch of the model by Tu and Marsch (1995). Each
sheet in the left-hand panel shows a family of correlated field lines, e.g., with
a common solar source. There may be large-scale fluctuations along these
fields. However, the magnetic stress tensor is too small to drive the fluid to
move with considerable speed during the expansion time, so the different sheets
don’t mingle and remain as incompressible structures which are convected by
the spacecraft. Thus, if one were to sample along one of these structures,
one would measure rA ∼ 1 and σC ∼ 1, if one were to measure only across
such structures (perpendicular to them), one would sample only the variations
from the convected structures, and hence observe rA ∼ 0 and σC ∼ 0. The
right-hand panel shows how this situation varies with helioscentric distance
and solar wind speed. As we move further out, the average Parker spiral angle
inreases and we tend to measure more across incompressible structures. This
effect is stronger for slow wind than for high-speed streams because the latter
have smaller average Parker angles.

A beautiful way to visualize this mixture of 2-d turbulence with “normal” or
“slab” turbulence, was first shown by ? with their “Maltese cross”. Figure 7.18
shows 15-minute observations with the ISEE-3 magnetometer. For every one
of the 463 observions used here, the correlation function was determined under
the assumption of rotational symmetry with respect to ~B0. Then the two-point
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Figure 7.18: Maltese cross described by the mixture of 2-d turbulence and
Alfvén waves. From ?.
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correlation function,
R(r⊥, r‖) (7.64)

can be computed using the frozen in approximation (or Taylor’s hypothesis
for MHD) and the convection of fluctuations across the spacecraft. Plotting
the strength of R on a rectangular grid spanned by r⊥ and r‖ and mirroring
across the two axes gives the “Maltese cross” of solar wind turbulence. It
can be interpreted in the following way. Alfvén waves with ~k ‖ ~B0 contribute
to contours elongated parallel to r⊥ while fluctuations of the 2-d turbulence
type appear as contours elongated parallel to r‖. Thus, this data set is not
described b pure Alvénic turbulence, nor by pure isotropic turbulence. Two
populations are needed - fluctuations with large correlation lengths transverse
to ~B (Alfvénic) and fluctuations in a plane parallel to ~B (quasi-2-d). At
small (r⊥ < 5 · 105 km) separations, Alfvénic fluctuations dominate, but at
r‖ > 151̇05km quasi-2-d fluctuations become important.

7.7 A Worked Example

solar wind
Use ACE data for exercise
Prepare python script
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Chapter 8

The Fokker-Planck Formalism

In this chapter, we will consider the consequences of collisions in a plasma.
We will begin with a brief repetition of some aspects of kinetic physics and
the Boltzmann and Vlassov equations. We will then investigate various kinds
of collisions and their treatment. Finally, we will derive the Fokker-Planck
equation and consider two applications - equilibration and the slowing down
of a beam in a plasma. We will closely follow the excellent text book by Rossi
and Olbert (1970).

8.1 A Brief Repetition of Kinetic Physics

A plasma as well as a gas can be considered as a collection of individual
particles. The exact mathematical treatment of such a collection is difficult
if not impossible and, therefore, these collections of particles are treated in a
statistical manner.

In the simplest case of point particles, a single particle is completely char-
acterized by its mass, position, ~x, and momentum, ~p. The total energy of the
particle is

U =
√

p2c2 +m2c4 = mγc2, (8.1)

where c is the speed of light, γ = (1− v2/c2)−1/2 is the Lorentz factor, p = |~p|,
and m is the particle’s rest mass. The velocity of the particle, i.e., the rate of
change of its spatial position, is found by inverting eq. 8.1 to be

~v = ~̇x =
c2~p

U
, where ~p = mγ~v. (8.2)

The instantaneous condition of the particle is determined by its posi-
tion and momentum vectors and may be represented by a point in the six-
dimensional phase space, (~x, ~p) = (x1, x2, x3, p1, p2, p3) where ~x = (x1, x2, x3)
is the position in “ordinary” space and ~p = (p1, p2, p3) is the position in mo-
mentum space.

159
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As the particle moves through phase space, it describes a curve through
it. The velocity of the movement is given by the six-dimensional vector
(ẋ1, ẋ2, ẋ3, ṗ1, ṗ2, ṗ3). According to Newton’s second law,

~̇p = ~F , (8.3)

where ~F is the force acting on the particle.
The system under consideration normally consists of many particles and

we make the assumption that we can divide phase space into small volumes
which all still contain enough particles to make averaging over them a sensible
operation. These small volumes are small compared to the characteristic scales
of the system. Then we can study the properties of the bulk of all particles in a
statistical manner. For this purpose, we introduce the distribution function
f(x1, x2, x3, p1, p2, p3, t) = f(~x, ~p, t) such that

f(x1, x2, x3, p1, p2, p3, t) dx1 dx2 dx3 dp1 dp2 dp3 = f(~x, ~p, t) d3x d3p (8.4)

gives the number of particles that lie in the phase space volume d3x d3p at
time t. The integral of the distribution function, f , with respect to d3p gives
the number density of particles in the volume element, d3x, in ordinary space,

n(x1, x2, x3, t) =

∫ ∞

∞
dp1

∫ ∞

∞
dp2

∫ ∞

∞
dp3 f(x1, x2, x3, p1, p2, p3, t). (8.5)

The distribution function f is invariant under Lorentz transformations.
Many detectors measure the so-called differential directional intensity

of particles. This quantity is defined as a function J(x1, x2, x3, U, ϑ, ϕ, t) with
which J dA dω dU dt gives the number of particles with energy between U
and U +dU measured during a time interval dt to traverse the cross-sectional
area dA from a direction within solid angle dω around the normal to dA, see
Fig. 8.1.

Next, we relate this quantity to the distribution function f . The particles
incident on the detector from direction (ϑ, ϕ) from within solid angle dω and
with energy in U, U + dU occupy a volume p2 dp dω in momentum space.
Here, p is the magnitude of the momentum corresponding to total energy U
according to eq. 8.1. The number of particles which pass through the surface
element dA in a time interval dt is just the number density in ordinary space
times the space volume spanned by dA v dt, which is just dA v dt f p2 dp dω.
From conservation of the number of particles, it follows that

J dA dω dU dt = f dA p2 dp dω v dt. (8.6)

Differentiation of eq. 8.1 with respect to momentum p gives

dU

dp
=
c2 p

U
. (8.7)
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Figure 8.1: The differential directional intensity is measured by a detector
with area dA from a direction (ϑ, ϕ) from the normal to dA and from within
solid angle dω. The number of particles in the energy interval between U and
U + dU is the differential directional intensity, J(~x, U, ϑ, ϕ, t).

Replacing the velocity term by the expression given in eq. 8.2 and cancelling
common factors, we have

J = p2f. (8.8)

Thus, measurement of the differential directional intensity, J , by a sensor is
equivalent to measuring the distribution function, f . This is an important
finding, by measuring J and U (or p2), you have also measured the particle
distribution function, f .

8.1.1 Continuity Equation in Phase Space

If we allow processes to gradually change the momentum (vector) and position
(vector) of individual particles, e.g., by external forces which result in accel-
eration, the distribution function is altered in a way which we we need to be
able to describe quantitatively. Because of the conservation of particles, there
must be a continuity equation in phase space which allows us to describe these
changes under certain assumptions,

−∂f
∂t

=
∂

∂xi
(ẋif) +

∂

∂pi
(ṗif) . (8.9)
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Here, we have applied Einstein’s summation convention,

~x · ~y = xiyi
.
=

3∑

i=1

xiyi.

We can also write the continuity equation as

−∂f
∂t

= ~∇ · (f~v) + ~∇p

(

f ~̇p
)

, (8.10)

where
~∇p

.
= ~e1

∂

∂p1
+ ~e2

∂

∂p2
+ ~e3

∂

∂p3

and ~∇ in ordinary space is defined accordingly. Because ~v is only a function
of ~p, but not of ~x, the divergence of ~v vanishes, ~∇ · ~v = 0. This argument is
not really watertight. For instance, in a compressible gas, speed can depend
on position, and the argument breaks down. But we will remedy this situation
in a short while, so bear with me. Thus,

~∇ · (f~v) = ~v · ~∇f. (8.11)

Because of ~̇p = ~F , we can write the momentum divergence as

~∇p · (f ~̇p) = ~∇ · (f ~F ) = ~F · ~∇f + f ~∇p
~F . (8.12)

The force acting on the particles can consist of gravitation and electromagnetic
forces. We will neglect nuclear forces as they are very short ranged and because
their inclusion could lead to a violation of the assumpton of particle conser-
vation via nuclear reactions. Gravitation is often negligible in heliospheric
physics, but we can, nevertheless, include it in our considerations.

~F = m~g + q( ~E + ~v × ~B) (8.13)

The vectors ~g and ~E are independent of momentum, ~p, and, therefore the only
term to survive in eq. 8.12 is

∇p · (~v × ~B) = ~B · (~∇p × ~v)− ~v · (~∇p × ~B), (8.14)

where ~∇p× is the curl operator in momentum space. The second term vanishes

again, because ~B is independent of ~p. The first term vanishes as well. Accord-
ing to eq. 8.2, the velocity vector is given by the gradient of total energy, U ,
in momentum space,

~v = ~∇p

√

c2p2 + m2c4.

Because the curl of a gradient vanishes, the first term in eq. 8.14 vanishes as
well. Hence, eq. 8.12 becomes

~∇ · (f ~̇p) = ~F · ~∇pf. (8.15)
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Using eqs. 8.11 and 8.15, we can rewrite the continuity equation (eq. 8.9) in
simplified form,

−∂fa
∂t

= ~v · ~∇fa + ~Fa · ~∇pfa. (8.16)

If there are several different particle species in the system, this equation needs
to be replaced by a set of equations, one each for each particle species. We
have indicated this by adding an index a to mark different particle species.

In fact, the independence of ~v on ~x and of ~F on ~p is not required separately.
Consider the following generalized argument. From Hamiltonian mechanics we
know that

ẋi =
∂H

∂pi
, and ṗi = −∂H

∂xi
. (8.17)

Hence, differentiating the left-hand equation with respect to xi and the right-
hand equation and with respect to pi, we have an identity,

∂ẋ1
∂xi

=
∂2H

∂xi∂i
= −∂ṗ1

∂pi
. (8.18)

However, this entails that the first and third term in the continuity equation
(eq. 8.9) cancel,

−∂f
∂t

=
∂

∂xi
(ẋif) +

∂

∂pi
(ṗif) ,

=
∂ẋi
∂xi

f + ẋi
∂f

∂xi
+

∂ṗi
∂pi

f + ṗi
∂f

∂pi
, i.e.,

−∂f
∂t

= ẋi
∂f

∂xi
+ ṗi

∂f

∂pi
= ~v · ~∇fa + ~Fa · ~∇pfa. (8.19)

Thus, we have just found a more general derivation of the continuity equation
and remedied the situation on page 162. We found the same final result as in
eq. 8.16, but without taking recourse to hand-waving arguments.

As long as the forces are entirely determined by external agents, e.g., by the
Earth’s gravitational and magnetic field in the case of the magnetosphere, this
equation, together with the prescriptions for the external fields, fully describes
the system. However, if the electromagnetic field is determined by the charge
and current distributions of the particles, as is the case in highly ionized plas-
mas such as the interplanetary plasma, a self-consistent set of equations must
be found. This is the subject of plasma physics or the statistical or kinetic
description of that subject and will not be treated here.

8.1.2 The Vlasov Equation

Equations 8.16 and 8.19 are often called the Vlasov equations. It describes
systems of particles for which collisions are unimportant. This set of equa-
tions looks innocent, deceitfully simple. In fact, it is not. As soon as electric
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charge and current densities in the plasma and maybe even self-gravitation
play an appreciable role in the net forces acting on the particles, these forces,
~Fa, depend on the distribution functions fa. Mathematically speaking, the
components Fa,i of the forces become functionals of the distribution functions
fa (often of many particle species), and, hence, the Vlasov equations turn into
a set of non-linear integro-diffrential equations. No general methods exist for
solving such problems and, therefore, only solutions for special cases have been
found.

8.1.3 The Boltzmann Equation

The solution of the Vlasov equations becomes even more complex when colli-
sions are play an important role in the physics of the system, such as when par-
ticles can be scattered on temporal and spatial scales which are small compared
with the dimensions of the system. Such collisions can change the momentum
by a large amount, or, in other words, the forces acting on the particles can
change considerably on scales smaller than the volume elements over which we
average the particles. In ordinary space, this could be, e.g., the Debye-radius.
In this case, we can no longer average over all particles in that phase-space
volume and the fluid description ought to break down. However, we can resort
to the following prescription when collisions are important but still rare. In
addition to the underlying flow of particles through phase space, we need to
add the possibility of occasional large changes in the momentum of particles.

Formally, these changes can be represented by a collision term in the conti-
nuity equation which serves as a “source term”. We then obtain the so-called
Boltzmann equations,

∂fa
∂t

+ ~v · ~∇fa + ~Fa · ~∇pfa =

(
δfa
δt

)

coll

. (8.20)

A similar equation was first investigated by Boltzmann when he studied ordi-
nary gases and Brownian motion.

It is sometimes difficult to keep apart the physics that contributes to the
collision term and that contributes to the global average forces ~Fa. A simple
case is that of an ordinary gas in a gravitational field. Then the average force is
well described by gravitation and the collision term is entirely due to the forces
acting during the interaction of gas molecules when they approach to scatter or
interact. Gravitational forces between the molecules are entirely negligible. A
complicated case is that of a plasma where both microscopic and macroscopic
forces have the same origin in the charge and current densities of the particles.
In this case, one needs to somehow separate the electromagnetic field into a
regular, average background field, ~F and a stochastic field that is the basis of
the collision term. However, how this separation is to be performed is again
often strongly dependent on the problem and no standard method exists.
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In some cases, e.g., when particle energies are so large as to exceed the rest
mass of some of the particle species, particles can also be created and destroyed,
in some cases, energy is lost due to radiation (e.g., bremsstrahlung). Particles
may also decay, leading to destruction of particles, but also to creation of new
particles. In this case the Boltzmann equation must be generalized to include
these effects as well, which is done by adding additional “collision terms”,

∂fa
∂t

+~v·~∇fa + ~Fa·~∇pfa =

(
δfa
δt

)

coll

+

(
δfa
δt

)

creation

+

(
δfa
δt

)

destruction

+

(
δfa
δt

)

radiation

(8.21)
In section 8.2 we will derive a method how to compute collision terms in some
special cases, the so-called Fokker-Planck method.

8.1.4 Liouville’s Theorem

In the special case where collisions and other losses or scattering mechanisms
are unimportant, the Vlasov equation holds. It can be rewritten in the follow-
ing form

∂fa
∂t

+ ~v · ~∇fa + ~Fa · ~∇pfa
.
=

dfa
dt

= 0, (8.22)

where d
dt

is the total derivative with respect to time. The total derivative with
respect to time of fa vanishes, i.e., fa is conserved. In other words, as we
move along through phase space with a particle, the distribution function, fa,
of neighboring particles remains constant. In again other word, this tells us
that, in phase space, the gas formed by the particles is incompressible. This
is known as Liouville’s theorem. Basically, what it tells us is the following.
Imagine a surface in phase space that encloses a number of particles. As the
particles move through phase space according to the respective momentum
equations the shape of the surface is constantly being changed in such a way
that 1.) the number of particles inside the surface remains conserved, and
2.) the volume enclosed by the surface is constant in time. In other words,
phase space is incompressible. In fact, that is also exactly what eqs. 8.18 are
telling us, as we can see by considering the following analogy from ordinary
fluid dynamics.

~v

V

S

d~S

v∆t

Figure 8.2: Analogy with a com-
pressible comoving fluid control vol-
ume.

Consider a control volume comoving
with the fluid. It will always contain
the same number of particles (ignoring
diffusion), and so its mass is conserved
in time, dm/dt = 0. However, it can
be compressed, and then the total vol-
ume is not conerved, dV/dt 6= 0, and
hence mass density is also not conserved,
dρ/dt 6= 0. Fig. 8.1.4 shows an example.
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Let us consider the change of its volume,
V , which is due to the motion of d~S with
velocity ~v. Then the change of volume
will be

∆V = (~v∆t) · d~S.

Using Gauss’s law and dividing by ∆t, we obtain

∆V

∆t
=

∫ ∫ ∫

V

~∇ · ~vdV.

Next we assume that V is very small, V → δV , in fact so small, that ~∇ · ~v =
const. over δV . Then we have

∆δV

∆t
=

∫ ∫ ∫

δV

~∇ · ~vdV =
(

~∇ · ~v
)

δV,

exactly because ~∇ ·~v = const. over δV . Taking the left- and right-most terms,
we find that

~∇ · ~v =
1

δV
· ∆δV

∆t
, (8.23)

in other words, the divergence of the velocity vector field equals the relative
temporal change of the volume. In yet other words, if the volume changes with
time, the divergence of the velocity field must be non-zero, or if ~∇ · ~v = 0, we
have an incompressible fluid.

Now inspect equation 8.18. What it tells us is nothing else, than that the
phase space volume is incompressible.

Of course, Liouville’s theorem also maps to the differential directional in-
tensity, J = p2f . From Liouville’s theorem, it follows that the quantity J/p2

must also be conserved along a trajectory in phase space. Consider a parti-
cles with momentum ~p and corresponding energy U in ordinary space. If we
measure J(U) in the direction of ~p, i.e., tangentially to the particle trajectory,
then Liouvilles theorem states that J/p2 has the same value at all points along
the trajectory. If the particles momentum changes, then so will J(U), but in
such a manner as to conserve J/p2 (eq. 8.8).

8.2 The Fokker-Planck Method

In this section we will derive the Fokker-Planck equation and introduce the
Fokker-Planck Formalism for deriving collision terms for some special cases.
For this we need to consider the random-walk problem and binary collisions
in a plasma. We will then derive the Fokker-Planck equation and give some
applications.



8.2. THE FOKKER-PLANCK METHOD 167

8.2.1 Random Walk in one Dimension

We will follow Chandrasekhar (1943) in his derivation of the problem of a
random walk in one dimension. Such a problem was first studied by Pearson
(1905) who formulated the problem as we will here. A more general fomulation
of the problem was given by Rayleigh (1880). See the bibliographic notes in
Chandrasekhar (1943) for more information about the history of the problem.
While the problem will need to be applied in three dimensions, its properties
are more clearly seen in just one dimension and, therefore, we consider it in
only one dimension.

Consider a particle (or a drunken sailor) which takes a series of steps of
equal length, l, in either forward or backward direction with equal probability,
p = 1/2. After taking N steps, it could be at any of the points

−Nl, (−N + 1)l, . . . ,−1, 0, 1, . . . , (N − 1)l, Nl.

The situation is shown in Fig. 8.3. Obviously, there are different paths that
can lead to a position ml after N steps. Therefore, we need to ask the question
what is the probability W (m,N) that the particle be at location m after N
steps?

The probability of any one given sequence of N steps is

pN =

(
1

2

)N

because the probability of moving forward or backward is always 1/2. In order
to arrive at position ml, more steps must be taken in the positive direction
(for positive m), to be more precise, np steps must be taken in the positive,
and nn steps in the negative direction. The sum np + nn must equal N , the
difference, np−nn = m. Hence, np = (N +m)/2 and nn = (N −m)/2. If N is
odd, then m is always odd as well, so we have no difficulties with non-integer
numbers np or nn. The number of distinct sequences (np, nn) is given by

W (m,N) =
N !

(
1
2
(N +m)!

) (
1
2
(N −m)!

)

(
1

2

)N

, (8.24)

which is the Bernoulli distribution. The expectation value form, 〈m〉 vanishes,
〈m〉 = 0, as expected. The expectation value for m2 is given by 〈m2〉 = N .
These are properties of the Bernoulli distribution.

We now make an important assumption. In the case that N is large and
m ≪ N we can simplify the Bernoulli distribution by applying Stirlings ap-
proximation for the factorial,

log n! = (n+
1

2
) log n − n +

1

2
log 2π + O(n−1), for n −→ ∞.
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t

x

x = ml

Figure 8.3: Random walk in one dimension. Several paths lead to location m.
The probability distribution is given by eq. 8.24.
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We then have

logW (m,N) ≈ (N +
1

2
) logN

−1

2
(N +m+ 1) log

(
N

2

(

1 +
m

N

))

−1

2
(N −m+ 1) log

(
N

2

(

1− m

N

))

−1

2
log 2π −N log 2, (8.25)

where the last term comes from the (1/2)N term. Because m≪ N we can also
expand the logarithm

log
(

1± m

N

)

= ±m
N

− m2

2N2
+O

(
m3

N3

)

.

With this approximation eq. 8.25 becomes

logW (m,N) ≈ (N +
1

2
) logN − 1

2
log 2π −N log 2

−1

2
(N +m+ 1)

(

logN − log 2 +
m

N
− m2

2N2

)

−1

2
(N −m+ 1)

(

logN − log 2 − m

N
− m2

2N2

)

.(8.26)

We can further simplify this equation and obtain

logW (m,N) ≈ −1

2
logN + log 2− 1

2
log 2π − m2

2N
. (8.27)

Exponentiating, we finally find the expression forW (m,N) in the limit of large
N and m≪ N ,

W (m,N) =

(
2

πN

)1/2

exp

(

−m2

2N

)

. (8.28)

Clearly, for large N , we will be more interested in measuring the displace-
ment, x = ml, from the original position of the particle. If we further consider
intervals, ∆x, which are large compared with a single step, l, we can ask for
the probability, W (x)∆x, that the particle is likely to be in interval [x, x+∆x]
afterN steps (or a time t = Nτ , where τ is the time between steps.). This is
given by

W (x,N)∆x = W (m,N)

(
∆x

2l

)

, (8.29)
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because m must be even or odd, depending on whether N is even or odd. In
other words, because ∆m has to be ∆m = 0,±2,±4, . . .. Inserting m = x/l
and eq. 8.28 in this result, we obtain

W (x,N) =
1√

2πNl2
exp

(

− x2

2Nl2

)

. (8.30)

In the final step, we will now consider what happens to the particle in time.
Suppose the particle undergoes ν = 1/τ scatterings or displacemnts per unit
time, then we can write the probability W (x, t)∆x that the particle be in the
interval [x, x+∆x] after a time t as

W (x, t)∆x =
1

2
√
πDt

exp

(

− x2

4Dt

)

∆x, (8.31)

where we have written the diffusion constant

D =
1

2
νl2.

Eq. 8.31 is the general solution to the problem of random walks. It is also the
solution to diffusion problems and many other problems.

We have not discussed what is the cause of the scattering or displacement
events discussed in the previous paragraphs. In this chapter we will assume
that displacements are due to binary collisions between particles. Therefore,
we will briefly repeat the physics of such collisions in a plasma as it is more
complicated in a plasma than for simple binary collisions of isolated particles.

8.2.2 A Brief Repetition of Binary Collisions

Consider an elastic collision between two particles of masses m1 and m2 and
charges q1 and q2 as shown in Fig. 8.4. The asymptotic angle is given by (see,
e.g., volume I of Landau and Lifschitz (1981)) θ = π − 2α and can be written
as

tan
θ

2
=
q1q2
µv20b

, (8.32)

where µ = m1m2/(m1+m2) is the reduced mass. Next we consider the flux of
particles which flows through the circular rings in Fig. 8.4. All particles with a
given impact parameter (b, b+db) are deflected into the angular interval (θ, θ+
dθ). They first cross the area A1 = 2πb db, then through A2 = σ(θ)2π sin θ dθ.
The flux through these two cross-sectional areas must be conserved, every
particle that enters A1 is scattered into angle θ. This defines the scattering
cross section, σ(θ)

σ(θ)
.
=

b

sin θ

db

dθ
. (8.33)
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b

φ

θ

~r2

~r
(0,0,0)

~r1

m2, q2

m1, q1, v0

α

Figure 8.4: Geometry for two-body collisions between particles of masses m1

and m2 and charges q1 and q2.

After some calculation one obtains the expected expression for the scattering
cross section of Coulomb collisions, the well-known Rutherford cross section,

σ(θ) =

(
q1q2

2µv20 sin2(θ/2)

)2

. (8.34)

Armed with this expression we can now calculate scattering properties in a
plasma. This is more complicated than it sounds because of the long range of
the Coulomb force. In classical scattering situations such as those described by
the Boltzmann equation, the interaction between two particles is considered
to be instantaneous. This is certainly not the case for interactions governed
by the long-ranged Coulomb force. On the other hand, in a plasma a positive
charge is shielded by electrons (Debye-shielding) and vice versa. Therefore, the
Coulomb force acting between two particles a and b will not extend to infinity
as it would in empty space, but will be limited to a volume largely determined
by the Debye length,

λD =

√

ε0kBTe
nee2

. (8.35)

In interplanetary space the Debye length is on the order of several meters.
Normal flow speeds are hundreds of km per second, and so a typical inter-
action time is given by ∆t = λD/v ≈ 10−5 seconds which is short compared
with typical time scales of the plasma, such as relaxation time, growth time of
instabilities, etc. Thus, Debye shielding allows us to use the same formalisms
as used for classical scattering theory. Nevertheless, we should not feel too
comfortable with this situation. There are typically some 106 particles within
a Debye sphere and these particles are definitely not statistically independent.
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Thus, we are now faced with the problem of correlated many-particle ensem-
bles which is not described by the classical Ansatz of one-particle distribution
functions, fa, as we used it in the introduction to this chapter.

There is a further complication that we need to mention. Although we can
treat scattering as an instantaneous process, as we just saw in the previous
paragraph, one other important assumption of classical scattering theory is
not fulfilled. There one normally assumes that the collision process results in
a discontinuous velocity change |∆~v| which is of the order of the particles ve-
locity before the scattering, |~v′|. In the Fokker-Planck formalism to be derived
below, we will make the opposite assumption, namely that the change in ve-
locity is small enough to make certain Taylor expansions good approximations
that can be truncated after the second-order terms in ∆v. Obviously, this ap-
proach will not be able to correctly describe the large-angle scattering of close
Coulomb collisions. However, as we will see shortly, such large-angle scatter-
ings are much rarer than small-angle scatters. In fact, the average time needed
for a deflection by 90 degrees is shorter for a succession of multiple small-angle
scatterings than for a single large scatter. It is because of this property, which
we will derive shortly, that we can apply the Fokker-Planck formalism to a
plasma. This makes life a lot easier because it leads to a second-order par-
tial differential equation governing the distribution function, fa, and we do
not need to consider the much more complicated integro-differential equations
which we would have to consider if we allowed large deflections.

We are now ready to compute the scattering of a particle in a plasma. We
begin by investigating the scattering cross section for scattering by 90 degrees.
The impact parameter that leads to a 90-degree scatter is

bπ/2 =
q1q2
µv20

, (8.36)

(see eq. 8.32) and the corresponding cross section for scattering by at least 90
degrees is

σπ/2 = π b2π/2 = π

(
q1q2
µv20

)2

. (8.37)

Next we compare the cross sections for small-angle scattering and one single
90-degree scatter. We will see that the probability of multiple scatters leading
to a 90-degree deflection is much larger than that of one single collision to lead
to such a deflection.

In order to investigate multiple scattering by a small angle we consider a
particle moving along the z axis. When it collides with another particle, it will
experience a change in its transverse velocity. For simplicity, we only consider
one component of that change, e.g., the x component. After N such collisions
the total change of velocity in x direction is given by

∆vx =
N∑

i=1

(∆vx)i. (8.38)
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For small-angle scattering the change in momentum is small compared to the
total momentum and the directional change for small angles can be approxi-
mated by

∆θ =
2q1q2
µv20b

. (8.39)

Obviously, this is only possible for large impact parameters. As a particle
moves through a plasma with n scattering centers per unit volume the average
change of its direction will cancel out, a similar number of scatters will lead to
positive and negative changes because scattering has equal probabilities in all
directions. However, the mean square displacement from the original direction
will not vanish. The particle will appear to diffuse in direction space. The
expectation value of the squared deviation from the original direction is given
by

〈
(∆θ)2

〉
=

∫ ∆θmax

∆θmin

d(∆θ) (∆θ)2F (∆θ), (8.40)

where F (∆θ) is the number of collisions which result in a change of direction
into the interval (∆θ,∆θ+d(∆θ)). The integral has a lower and an upper inte-
gration limit which requires further discussion. Let us consider the correspond-
ing impact parameters bmin = 2q1q2/(µv

2
0∆θmin) and bmax = 2q1q2/(µv

2
0∆θmax).

The number of collisions in an angular interval (∆θ,∆θ + d(∆θ)) is given by

F (∆θ)d(∆θ) = nL2π b db, (8.41)

as the particle moves along a stretch of length L. Using this expression we
can express the square of the directional change by an integral over a range of
impact parameters

〈
(∆θ)2

〉
=

8πnLq21q
2
2

µ2v40

∫ bmax

bmin

db

b
,

=
8πnLq21q

2
2

µ2v40
ln
bmax

bmin

. (8.42)

This is where we can appreciate the technical motivation of the integration
limits. The integral is logarithmically divergent for bmin −→ 0 or bmax −→ ∞.
This divergence is a consequence of the long range of the Coulomb force. How-
ever, as already mentioned, this long range is not justified in a plasma where a
charge is screened on a length scale given by the Debye length, λD. Then the
effective potential is not the ordinary Coulomb potential, Φ = −q1q2/(4πε0r)
, but is given by Φ = −(q1q2/(4πε0r)) exp(−r/λD). But then the result that
was just derived is not truly valid but only a good approximation for impact
pameters which are smaller than the Debye length, λD. The deflection of the
particle is very small for larger impact parameters. Thus we can use the Debye
length as a good approximation for the upper integration limit,

bmax = λD =

√

ε0kT

ne2
. (8.43)
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Of course, this is a very coarse approximation, such a sudden cut off of the
integration at bmax hardly does justice to the Debye screening in the plasma.
However, this imprecise treatment does not affect the final result in a major
way because the upper integration limit only enters into the final result loga-
rithmically. The advantage of this treatment is that we do not need to treat
scattering in a full Yukawa potential, Φ = −(q1q2/(4πε0r)) exp(−r/λD).

The lower integration limit must fulfill two goals. On the one hand, it needs
to get rid of the logarithmic divergence of the integral, on the other hand, it
needs to recover our approximation of small angle scattering. As soon as the
impact parameter gets too small, the approximation of eq. 8.39 is no longer
valid (the tangent no longer equals the argument). This approximation is only
valid for ∆θ ≪ 1 and so we set (∆θmax/2) = 1 and write for the kinetic energy,
mv20/2 = 3kT/2, to obtain an expression for bmin,

bmin ≈ q1q2
µv20

≈ q1q2
3kT

. (8.44)

Here too, the very coarse approximation is somewhat softened by the logarith-
mic dependence of the result on bmin. With these two limits, we can now give
the mean squared deflection,

〈
(∆θ)2

〉
=

(
8πn(q1q2)

2

µ2v40
ln Λ

)

L, (8.45)

where

Λ
.
=
bmax

bmin

=
3

q1q2e

(
ε0k

3T 3

n

)1/2

(8.46)

is the argument of the so-called Coulomb-logarithm and L is the path length
which the particle moves through the plasma.

We can now finally determine the path length which leads to a deflection
by 90 degrees by multiple scattering by setting 〈∆θ2〉 = 1 and solving for L.
Again, this result is not very precise because the quadratic addition of the
angular deflections 〈∆θ2〉 = 1 in x and y direcion do not quite add up to 90
degrees - but nearly.

Lπ/2 =

{

8πn

(
q1q2
µv20

)2

ln Λ

}−1

. (8.47)

Thus, the cross section for multiple scattering to 90 degrees is given by

σπ/2
.
=

1

nLπ/2

= 8π

(
q1q2
µv20

)2

ln Λ. (8.48)

We can now compare this result with the cross section for scattering by 90
degrees in a single scatter, eq. 8.37,

σπ/2m
σπ/2s

= 8 lnΛ. (8.49)
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Because the Coulomb logarithm lies between 15 and 30 for most plasmas (and,
hence, also for heliospheric plasmas) it is clear that multiple scattering is the
dominant process and that scattering by 90 degrees is mainly achieved by a
succession of scatterings by small angles.

8.2.3 Derivation of the Fokker-Planck Equation

Next, we want to describe the random (stochastic) motion of a collection of par-
ticles, f(~v, t), with a partial differential equation, the so-called Fokker-Planck
equation. This is not as straightforward as it may sound for the following
reasons.

Sofar we have assumed that all quantitites in the plasma change slowly.
This means that the plasma was always in thermodynamic equilibrium, an
assumption which is not always met. For example, in interplanetary space,
the electron temperature is quite different from the temperature of the ions,
and these are proportional to mass, at least in the high-speed solar wind. We
have interpreted this as a consequence of only very rare collisions between ions
and electrons and ions and ions and that the coupling between the particles
constituting the plasma occurs predominantly via waves. So what happens in
regions of the heliosphere in which collisions occur on a time scale which is too
slow to allow the plasma to equilibrate? In other words, how can we describe a
plasma which changes faster than it can reach equilibrium, i.e., faster that the
relaxation time? An example is a beam of energetic particles entering a slow
plasma, or also the behavior of a plasma in the vicinity of a heliospheric shock.
In this latter example, the collision time between two particles is very long.
Phenomena which are related to collisions between particles are often called
transport phenomena, examples include electric conductivity of a plasma, or
the behavior of a plasma with given initial and end conditions.

To investigate such situations we begin by considering binary collisions1

and the resulting deflection of the particles. Based on these considerations,
we will derive he so-called Fokker-Planck formalism with which one can de-
scribe the various phenomena touched upon above. We will only consider a
fully ionized plasma. If collisions with neutral particles play an important role,
then this problem must be treated differently, e.g., with a so-called Lorentz
model. Of course we will not be able to consider every single collision between
two particles in the heliospheric plasma, but we will pick out the relevant ones
and treat them in a statistical manner. On page 174 we showed that many
scatters by small angles are faster at producing a large deflection than waiting
for one single scattering event that leads to a large deflection (eq. 8.49). This
observation allows us to develop models for diffusion, electric conductivity and
other transport phenomena in a plasma. They can be developed using the

1If binary collisions are replaced by instabilities and associated similar phenomena, then
these are called ’anomalous’ transport phenomena.
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Fokker-Planck equation which we are going to derive here. Going to higher or-
ders in the expansion parameter l/(nλD) leads to the so-called Balescu-Lenard
equations which need to be derived from the primitive kinetic equations. How-
ever, they do not change the end result appreciably, so we will not do so, but
consider only the change of the velocity distribution function (VDF), f(~v, t)
with time in a plasma in which the electrons and ions are distributed with just
this VDF. Let the probability that a particle changes ist velocity ~v by ∆~v in
a time ∆t be given by F (~v,∆~v). Then the VDF f(~v, t) at a time t is given by

f(~v, t) =

∫

d(∆~v)f(~v −∆~v, t−∆t)F (~v,∆~v). (8.50)

if f(~v, t) changes only due to collisions. Under the assumptions, which we
detailed in the discussion leading up to eq. 8.49, i.e., that scattering occurs by
multiple small scatters, the change of velocity during a short interval ∆t, ∆~v,
must also be small. This allows us to expand the VDF f(~v) into a power series
in ∆~v.

f(~v, t) =

∫

d(∆~v)

{

f(~v, t−∆t)F (~v,∆~v)

−∆~v
∂

∂~v
[f(~v, t−∆t)F (~v,∆~v)]

+
1

2

∑

i

∑

k

∆vi∆vk
∂2

∂vi∂vk
[f(~v, t−∆t)F (~v,∆~v)] + o(∆~v3)

}

(8.51)

The term in the first line can be integrated easily, f(~v, t − δt) contains no
velocity difference, ∆~v and can be moved infront of the integral. The proba-
bility, F (~v,∆~v) is normalized, i.e.,

∫
d~vF (~v,∆~v) = 1, allowing us to isolate the

first term and move it to the left-hand side of the equation. We now have the
numerator of the definition of the partial derivative of f with respect to time,
so dividing by ∆t we have
(
∂f(~v, t)

∂t

)

coll

=
1

∆t

∫

d(∆~v)

{

−∆~v
∂

∂~v
[f(~v, t)F (~v,∆~v)] (8.52)

+
1

2

∑

i

∑

k

∆vi∆vk
∂2

∂vi∂vk
[f(~v, t)F (~v,∆~v)] + o(∆~v3)

}

.

We have taken the limit ∆t −→ 0, in which f(t − ∆t) −→ f(t). Next we
determine the expectation values of the moments of velocity,

〈
∆~v

∆t

〉

=
1

∆t

∫

d(∆~v)∆~vF (~v,∆~v) (8.53)

and 〈
∆vi∆vk

∆t

〉

=
1

∆t

∫

d(∆~v)∆vi∆vkF (~v,∆~v) (8.54)
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Figure 8.5: The change of a velocity distribution function (VDF) of a beam
of energetic particles in a plasma due to Coulomb collisions. The VDF expe-
riences a systematic slowing down which can be envisaged as due to friction,
and a broadening which can be viewed as diffusion in velocity space.

with which we can write the change in the VDF due to collisions in the plasma
up to terms to order ∆~v3 as
(
∂f(~v, t)

∂t

)

coll

= − ∂

∂~v

〈
∆~v

∆t

〉

f(~v, t) +
1

2

∑

i,k

∂2

∂vi∂vk

[〈
∆vi∆vk

∆t

〉

f(~v, t)

]

.

(8.55)
This equation is called the Fokker-Planck equation. For a plasma in thermo-
dynamic equilibrium both sides vanish, in other cases, this equation describes
the collision-induced change of the VDF in a plasma. This change can occur
by two processes. The first term describes a systematic change of the veloc-
ity which is proportional to velocity itself. The term can be considered as
a friction term allowing the velocity of the particles to increase or decrease.
The second term describes the other possibility to change f(~v). The VDF can
broaden, which can be considered as a diffusion in velocity space. Figure 8.5
illustrates these processes. Had we included higher orders in ∆~v in our expan-
sion, we would have found additional processes which are able to change the
VDF. However, they would not have changed this picture significantly. The
Fokker-Planck equation is limited in validity to plasmas in which collisions
tend to result in small changes of the velocity vector, ~v and in which large
changes in velocity are predominantly due to multiple small changes or small
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scattering processes. Terefore, the higher-order terms beginning with (∆v/v)3

which are smaller than the quadratic terms, are unimportant.

In order to apply the Fokker-Planck equation to a plasma, we need to
determine the expectation values for the changes of the moments of the velocity
(eqs. 8.53 and 8.54) on the basis of the properties of collisions in the plasma. We
have already prepared this for a plasma which relaxes via Coulomb collisions
when we determined the corresponding scattering cross sections. Let us now
consider the interaction of a test particle with velocity ~vT with a plasma.
To do so we need to determine two expectation values, one over all possible
impact parameters, b, and a weighted one over all possible velocities, ~v, of the
background particles. The averaging is best performed in the center of mass
frame of reference, but the result must be transformed back into the laboratory
system thereafter. This results in lengthy calculations which are given, e.g., in
Krall and Trivelpiece (1986). The end result is a system of auxiliary functions
gα(~v) and hα(~v),

gα(~v) =

∫

d~v′fα(~v)|~v − ~v′|, (8.56)

hα(~v) =
mT

µα

∫

d~v′
fα(~v

′)

|~v − ~v′| , where (8.57)

µα =
mT mα

mT +mα

, (8.58)

with which the Fokker-Planck equation turns into

(
∂f(~v, t)

∂t

)

coll

=
∑

α

[

−∂vi(fT∂vihα) +
1

2

∂2

∂vi∂vk

(

fT
∂2gα
∂vi∂vk

)]
4πnαq

2
T q

2
α

m2
T

ln Λ,

(8.59)
where the index α runs over all possible particle species in the plasma.

With this form of the Fokker-Planck equation we are now in the position
to determine transport properties of the plasma. In the coming paragraphs
we will consider the slowing down of a beam of energetic particles in a plasma
at rest, the plasma’s electric conductivity, and diffusion perpendicular to a
magnetic field.

8.3 Slowing Down of a Beam

Let us now investigate the slowing down of a beam of energetic particles (elec-
trons or ions). To do so we need to recall the situation sketched in Fig. 8.5.
The beam has a narrow distribution fT around a velocity ~u which differs sub-
stantially from that of the plasma. In the following we will approximate it by
a delta function, δ(~v−~u), at time t = 0, and we will consider the plasma VDF
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to be equilibrium, i.e., Maxwell distributions,

fT (~v) = δ(~v − ~u), (8.60)

fα(~v) =

(
mα

2πkTα

)3/2

e−
mαv2

2kTα . (8.61)

As we have shown in appendix A in the previous lecture, ’Introduction to
Extraterrestrial Physics’, the expectation values for certain quantities can be
determined by taking moments of the kinetic equations. The expectation value
for the change of the velocity of the beam is given by the first moment of the
Fokker-Planck equation.

∫

d~vḟT~v =
∑

α

4πnαq
2
T q

2
α

m2
T

ln Λ

∫

d~v

[

−∂vi(fT∂vihα) +
1

2

∂2

∂vi∂vk

(

fT
∂2gα
∂vi∂vk

)]

~v.

(8.62)
The left-hand side is easily derived because the time derivative can be moved
infront of the integral. What is left over is the expectation for the velocity, ~u.
With this we have, as expected, the time derivative of the expectation value of
the beam’s velocity on the left-hand side of the equation. Thus, equation 8.62
indeed describes the change of the beam velocity in time due to collisions with
other particles. The right-hand side is not so straightforward to evaluate.
Remembering the property of generalized functions (see, e.g., Gel’fand and
Shilov (1967)) that

∫

d~v(∂vifT (~v))ϕ(~v) = −
∫

d~vfT (~v)(∂viϕ(~v)). (8.63)

for test functions, ϕ, which tend to zero faster than any power of x (or rather
v in our case), we are now equiped to perform the moment calculation. We
apply the differential operator ∂vi from the left to the individual factors in the
first term of the right-hand side of the Fokker-Planck equation.

∫

d~v∂vi(fT {∂vihα}~v) =

=

∫

d~v {(∂vifT ) {∂vihα~v}+ fT {∂vi∂vihα}~v + fT {∂vihα} (∂vi~v)} ,

=

∫

d~v {−fT {∂vi∂vihα}+ fT {∂vi∂vihα}~v + fT {∂vihα} (∂vi~v)} ,

=

∫

d~v {fT {∂vihα}} ,

=
∂

∂~u
hα(~u). (8.64)



180 CHAPTER 8. THE FOKKER-PLANCK FORMALISM

Next we perform the same operations to the second term on the right-hand
side of eq. 8.62.

∫

d~v
∂2

∂vi∂vj

(

fT

{
∂2

∂vi∂vj
gα

}

~v

)

=

=

∫

d~v∂vi

[
(
∂vjfT

)
{
∂2gα
∂vi∂vj

}

~v + fT

{

∂vj
∂2gα
∂vi∂vj

}

~v + fT

{(
∂2gα
∂vi∂vj

∂vj~v

)}]

,

=

∫

d~v∂vi

[

−fT
{

∂vj
∂2gα
∂vi∂vj

}

~v + fT

{

∂vj
∂2gα
∂vi∂vj

}

~v + fT

{
∂2gα
∂vi∂vj

(
∂vj~v

)
}]

,

=

∫

d~v∂vi

[

fT

{
∂2gα
∂vi∂vj

(
∂vj~v

)
}]

, (8.65)

=

∫

d~v

[

(∂vifT )

{
∂2gα
∂vi∂vj

}
(
∂vj~v

)
+ fT

{

∂vi
∂2gα
∂vi∂vj

}

(∂vi~v) + fT

{
∂2gα
∂vi∂vj

}(
∂2~v

∂vi∂vj

)]

,

=

∫

d~v

[

−fT
{

∂vi
∂2gα
∂vi∂vj

}

(∂vi~v) + fT

{

∂vi
∂2gα
∂vi∂vj

}

(∂vi~v) + fT

{
∂2gα
∂vi∂vj

}(
∂2~v

∂vi∂vj

)]

,

=

∫

d~v

[

fT

{
∂2gα
∂vi∂vj

}(
∂2~v

∂vi∂vj

)]

. (8.66)

The last term vanishes, as one can easily see, because

∂2~v

∂vi∂vj
=
vδij − vivj/v

v2
. (8.67)

Obviously, it vanishes for i = j. To show this for i 6= j, we move to a frame of
reference in which ~v is parallel to the z axis. Then at most one of the factors
vi or vj is different from zero, and the expression must also vanish in this case.

All that is left to be done now is to determine the left-hand side of the
Fokker-Planck equation. This should now be easy. We obtain the preliminary
result

∂~u

∂t
=

4πq2T
m2

T

ln Λ
∑

α

nαq
2
α

∫

d~v

(
∂hα
∂~v

)

fT . (8.68)

To obtain the slowing down of the beam we now need to insert the initial
distribution, fT = δ(~v−~u) and the explicit expression for hα for a Maxwellian
background plasma, fα.

hα =
mT

µα

(
mα

2πkTα

)3/2 ∫

d~v′
e−

mαv′
2

2kTα

|~v − ~v′| . (8.69)

In further preparation, we substitute x2 = (mα/(2kTα))v
2 and use

∫

d~x
e−x2

|~x− ~y| =
π3/2

|~y| Φ(|~y|), (8.70)
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where Φ(y) is the error function,

Φ(y)
.
=

2√
π

∫ y

0

dx e−x2

. (8.71)

Thus we obtain for eq. 8.68

∂~u

∂t
=

4πq2T
m2

T

ln Λ
∑

α

mT

µα

nαq
2
α

∫

d~v




∂

∂~v

Φ
(√

mα

2kTα
|~v|
)

|~v|



 fT ,

=
4πq2T
m2

T

ln Λ
∂

∂~u






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α

mT
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nαq
2
α

Φ
(√

mα

2kTα
|~u|
)

|~u|






. (8.72)

As the beam with velocity ~u enters a plasma of electrons (index e) and ions
(index i) and temperatures Te and Ti, its slowing down can be written as

∂~u

∂t
=

4πq2T
m2

T

ln Λ
∂

∂~u
·






niq

2
i

(

1 +
mT

mi

) Φ
(√

mi

2kTi
|~u|
)

|~u|

neq
2
e

(

1 +
mT

me

) Φ
(
√

me

2kTe
|~u|
)

|~u|






. (8.73)

The second of the two terms is generally the dominant one because mT/me

is always considerably larger (well, by a factor A × 1836) than mT/mi. This
is a consequence of the dependence of the Rutherford scattering cross section
on the reduced mass, µ. Electrons have a considerably larger scattering cross
section than ions and, therefore, are better at slowing down other particles
than ions. This is true in a plasma, but also in solids, where this is also
observed. The energy loss of particles entering a solid is nearly entirely due to
electrons. Moreover, the slowing down is not as efficient for all beam velocities.
Figure 8.6 shows the behavior of the function Φ(u)/u and the ensuing slowing
down of the beam. Because the error function tends rapidly to unity for
large arguments, the quotient, Φ(u)/u, tends hyperbolically to zero and the
derivative decreases. A fast beam only experiences a small slowing down, while
a beam with a velocity in the vicinity of the thermal speed of the plasma will
be slowed down very efficiently. The inefficient slowing down of a fast beam2

is again a direct consequence of the functional dependence of the Rutherford
scattering cross section, σ ∼ v−4.

2This is no different than the slowing down in a solid. Particles loose most of their energy
towards the end of their trajectory, resulting in the Bragg peak.
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Figure 8.6: Behavior of the function Φ(x)/x and time derivative of the velocity
change by friction in a plasma. Obviously, the slowing down of an energetic
beam is small.

8.4 Equilibration or Electric Conductivity of

a Plasma

With these considerations we are now well equipped to calculate the electric
conductivity of a (thermal) plasma. For that we consider a plasma in a weak
electric field. Ions will drift relative to the electrons with a velocity, ~u, and
we will transform into the rest frame of the electrons which shall also have a
higher temperature, as depicted in Fig. 8.7. The ions will be accelerated to
higher velocities by the field. If the field is weak and the ions do not reach a
high velocity in short time, the slowing down by collisions will tend to coun-
terbalance the acceleration of the ions, and an equilibrium will be established
between acceleration by the weak field and slowing down by collisions. Then
the equation of motion for the ions can be written according to eq. 8.73

qiE = −∂~u
∂t
mi = −4πne2q2i

m2
i

ln Λ
∂

∂~u

[
1

u
Φ

(√
mi

2kTi
|~u|
)(

1 +
mT

mi

)]

. (8.74)

In this approximation of a small beam velocity in comparison to the thermal
speed of the electrons, the error function can be approximated as

Φ(x) ≈ 2√
π

(

x− x3

3

)

. (8.75)
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Figure 8.7: A cold ion beam (fb) in a hot electron plasma (fp) drifting relative
to the electrons which are at rest in this figure.

Inserting gives us an equation for the electric field E. The right-hand side of
that equation is proportional to a current density, J ,

E =
4πe2

mi

ln Λ nqi
∂

∂~u

[

2√
π

(√
me

2kTe
−
(
me

2kTe

)3/2
u2

3

)(

1 +
mi

me

)]

,

=
16
√
πe2

3me

ln Λ

(
me

2kTe

)3/2

nqiu,

=
nqiu

σ
=
J

σ
, (8.76)

where we have approximated 1 +mi/me ≈ mi/me. Invoking the generalized
Ohm’s law, the constant of proportionality, 1/σ, gives the electric conductivity
of the plasma,

σ =
3me

16
√
πe2 ln Λ

(
2kTe
me

)3/2

. (8.77)

8.4.1 Diffusion in a Magnetic Field

As a final application of the Fokker-Planck equation we consider the diffusion
perpendicular to a magnetic field. To do so, we consider the equation of
motion of MHD, which is given in eqs. B8 and B12 in the appendix of the
lecture ’Introduction to extraterrestrial physics’,

nimi
∂~ui
∂t

+ neme
∂~ue
∂t

= −~∇P + e (ni~ui − ne~ue)× ~B. (8.78)
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For a vanishing electric field, E = 0, and in equilibrium, this equation can be
written as

~J × ~B = ~∇P. (8.79)

The pressure gradient, ~∇P , is perpendicular to the current and the magnetic
field. If the plasma is isothermal, then the density gradient is parallel to the
pressure gradient and, hence, also perpendicular to the current and magnetic
field. Therefore, the only systematic motion in the plasma (i.e., the current)
has to be perpendicular to the density gradient and can not compensate for it.
Such a compensation could only occur if there could be a motion which were
also perpendicular to the magnetic field. Thus, eq. 8.79 tells us that there is
no diffusion across the magnetic field in a collisionless plasma.

However, this may change as soon as there are collisions in the plasma.
Consider Fig. 8.8 which shows a density gradient in a magnetized plasma. In
a volume element ∆V at position x0 there are more particles moving from left
to right, than from right to left because there are different numbers of particles
gyrating around the field lines at locations x0 + ai and x0 − ai. The number
of particles which moves to the left at x0 is given by

n1 = n0 + ai
dni0

dx
(8.80)

and the number of particles moving from left to right is given by

n2 = n0 − ai
dni0

dx
. (8.81)

Thus we have a non-vanishing average velocity at position x0,

〈~v0〉 =
n1|~v| − n2|~v|

n0

= 2ai
dni0

dx

v0
ni0

~̂y, (8.82)

where ~̂y is the unit vector in the ~y direction. Following the previous consid-
erations leading up to eq. 8.76, the particles experience a decelerating force in
the y direction,

~FD = −16
√
πe2

3me

ln Λ

(
me

2kTe

)3/2

nq2i 〈|~v0|〉 ~̂y, (8.83)

where v0 is the thermal velocity of the ions. According to the general formula
for drifts, this force leads to a drift

UD =
1

q

~FD × ~B

B2
= nqi

(

〈|~v0|〉 ~̂y
)

× ~B

σB2
, (8.84)

which is anti-parallel to the density gradient. This means that there is a
particle flux, ϕ,

ϕ = −D~∇n, (8.85)
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Figure 8.8: A density gradient leads to a drift of ions in the y direction. This
in turn leads to a slowing down and thus a force FD acting in the y direction.
This force results in a drift which opposes the density gradient.

where D ∼ σ−1B−2 is a diffusion constant. In other words, collisions lead to
a diffusion perpendicular to the magnetic field, but it is weak in a stronlgy
magnetized plasma or a highly conductive one.

(8.86)
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Chapter 9

Reconnection

9.1 Introduction

flares on Sun and other stars, interplanetary, magnetospheric,
In order to understand the properties of the plasma and magnetic field

in interplanetary space one often uses the so-called magneto-hydro-dynamic
(MHD) approximation. It approximates a plasma as a globally electrically
neutral but magnetized fluid in which temporal and spatial disturbances are
slow or large-scaled, respectively, when compared to the characteristic proper-
ties of the plasma such as plasma and cyclotron frequencies and Debye radius.
The equations of MHD consist of an equation of continuity for both the mass
density and the current density, an equation of motion, Ohm’s law, as well as

Maxwell’s equations. Often the displacement current ~̇E/c2 can be neglected.
We combine Ampéres and Ohms laws to obtain

~J =
1

µ0

~∇× ~B = σ
(

~E + ~v × ~B
)

, (9.1)

where σ is the electrical conductivity,

σ
.
=
ne2

me

τc, (9.2)

where τc is the average collision time in the plasma. We take the curl of eq. 9.1
and use Faradays law

~̇B = −~∇× ~E (9.3)

to obtain,

~̇B = ~∇× ~u× ~B +
1

µ0σ
∆ ~B, (9.4)

where we have used ∇×∇ × B = ∇(∇ · B) −∆B = −∆B. Equation 9.4 is
the induction equation of MHD. Understanding its structure helps us under-
stand the properties of the interplanetary medium. Depending on the electric

187
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conductivity of the plasma, either one of the two terms on the right-hand side
will dominate. For small conductivity, or for slow movements in the plasma,
the induction equation turns into a diffusion equation,

~̇B =
1

µ0σ
∆ ~B, (9.5)

because this term dominates the other term in this case. The quantity 1/µ0σ
is called magnetic diffusivity. We can use eq. 9.5 to derive a diffusion time,

[

∂ ~B

∂t

]

=

[

1

µ0σ

∂2 ~B

∂r2

]

=⇒ τdiff = µ0σL
2, (9.6)

where L is a typical scale of length.
In the case where conductivity is very large, or movements are very fast,

the diffusive term can be neglected,

~̇B = ~∇× ~u× ~B. (9.7)

As we will see in the following few paragraphs, this equation implies that the
magnetic flux through the surface S spanned by a closed curve C comoving
with the plasma is conserved. Figure 9.1 shows a sketch of the situation. The

~B

d~l

d ~A

~u

S
C

Figure 9.1: Magnetic flux through the surface S spanned by the closed curve
C.

magnetic flux passing through S can change in two ways. On the one hand, the
field strength ~B within the curve C can change. On the other hand, the curve
C can move with respect to the field ~B. In the first possibility, the change of
flux in a surface element d ~A is given by

~̇B · d ~A (9.8)
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and the total change is just the integral over the entire surface S. In the second
possibility an infinitesimal line element d~l of the curve moves relative to ~B.
The change in the enclosed field is then given by

~B ·
(

~u× d~l
)

(9.9)

and the total change is the contour integral along C. Using the vector identity
A · (B × C) = (A× B) · C we can rewrite eq. 9.9 and write the entire change
in the flux through the surface S spanned by C as

d

dt

∫

S

d ~A · ~B =

∫

S

d ~A · ∂
~B

∂t
−
∮

C

d~l ·
(

~u× ~B
)

. (9.10)

We rewrite the contour integral as a surface integral using Stokes’ theorem
∮

C

d~l ·
(

~u× ~B
)

=

∫

S

d ~A~∇×
(

~u× ~B
)

. (9.11)

Now the integrand is exactly the right-hand side of the induction equation for
the case of infinite conductivity. This implies that

d

dt

∫

S

d ~A · ~B =

∫

S

d ~A ·
(

∂ ~B

∂t
− ~∇×

(

~u× ~B
)
)

= 0, (9.12)

proving that the flux through the curve C remains unchanged. The physical
meaning of this is that the magnetic field co-moves with the plasma, this is
often called the “frozen-in magnetic field” , or ideal MHD. The transition from
a diffusion dominated to a frozen in situation can be parameterized by the ratio
of diffusion time τd to convection time τu, where

τd = µ0σL
2, and τu =

L

u
. (9.13)

We can now define the magnetic Reynolds number RM ,

RM
.
=
τd
τu

=
µ0σL

2u

L
= µ0σLu. (9.14)

For large RM the field is frozen in, for small RM it diffuses. In general, RM is
large in the interplanetary medium, as well as in the chromosphere and corona.

The lesson from this paragraph is that magnetic field can diffuse, if con-
ditions are appropriate. From what we have learned so far, field lines will
remain connected (“frozen in”) if conductivity is large enough, when diffusion
dominates, we can envisage field lines swapping their identity in localized re-
gions of low conductivity or where RM is not much larger than unity. This can
happen, when field is brought into a region where it needs to change on a very
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Figure 9.2: Reconnection separates fluid elements that were originally con-
nected and connects them with new ones. This can lead to changes in mag-
netic topology. In such regions (sketched with a flash here) scale lengths are
short, e. g. because the polarity of the magnetic field changes on a small scale.

small scale, e. g. near a current sheet. Then the diffusion time can be short
compared to the convection time and the “frozen in” approximation breaks
down. A field line can then disconnect from its original footpoint and then
reconnect with another field line, as sketched in Figure 9.2. While the “frozen
in” approximation is still valid in the global context, it can be broken locally
which allows for changes in magnetic topology, as is shown in Fig. 9.2. To
summarize, reconnection can occur when there is a global configuration that
brings magnetic field together at a rate and on a scale sufficient for breakdown
of the “frozen in” approximation. We will now consider the original model
of Parker and Sweet, consider its difficulties and improve the situation by in-
troducing Petscheks model for reconnection. A very primitive sketch of the
two models is shown in Figure 9.3. where magnetic field of opposite polarity
can be transformed into energy by diffusive annihilation. The corresponding
diffusion equation

∂ ~B

∂t
=

1

µ0σ
∆ ~B,

has the one-dimensional solution

B =

√
µ0σ

4t
e−

y2µ0σ
4t . (9.15)

The field diffuses and locations of field strength 1/emove away from the current
sheet at a speed v1/e =

√

4/µ0σt, as sketched in Fig. 9.4. The field strength in
the current sheet diminishes, the difference to the original field strength going
into the energy liberated by reconnection. This can be a substantial amount
of energy, visualized here by a dramatic change in field strength. However,
we can do better than that, and derive an estimate of the reconnection rate,
the speed at which magnetic field can be brought into the reconnection region.
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δ =
√

4t
µ0σ

t > 0

t = 0

δ = Bn√
µ0ρ
t

Figure 9.3: Reconnection in the model of Parker and Sweet (left) and Petschek
(right).

9.2 The Parker-Sweet Model

Consider a situation as sketched in Fig. 9.3a)

For this, we consider the very much simplified geometry sketched in Fig. 9.5.
Plasma flows in from the top and the bottom at a speed uy0 over a width 2L
and needs to exit the reconnection region (the gray shaded area in Fig. 9.5) of
width 2δ at a speed v which can be determined from the equation of continuity,

uy0L = vδ, (9.16)

This speed v can also be estimated from the Bernoulli equation

ρv2

2
= p− p0, (9.17)

where ρ is the plasma density, p the pressure in the center of the reconnection
region, and p0 the pressure in the undisturbed region far away. Of course, we’re
neglecting magnetic pressure here, in general this is of the same magnitude as
the plasma pressure (β ≈ 1), so we’re introducing an error of the order of a
factor of two. It too, will push the plasma outwards along the current sheet.
In order for the reconnection region to remain in hydrostatic equilibrium with
the surrounding plasma, the pressure at the boundary needs to be determined
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Figure 9.4: Diffusion
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Figure 9.5: Geometry of reconnections and the equation of continuity.

by

p− p0 =
B2

x0

2µ0

, (9.18)

where Bx0 is the field strength in the undisturbed region.
Next, we derive an expression relating the inflow speed uy0 to the diffusion

speed in the reconnection region. We compute the time is takes diffusion to
traverse a layer of thickness δ. From

δ =

∫ T

0

dt

√
1

4µ0σt

we obtain the diffusion speed vdiff

vdiff =
δ

T
=

1

µ0σδ
. (9.19)

The inflow speed uy0 can be estimated in the following way. Inside the recon-
nection region there must be an X-point because of symmetry considerations.
There, B, as well as flow speeds must be very small and hence Ohms law can
be written as

Jz = σEz,
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where Jz is the current density and Ez the electric field. Because σ is a scalar,
Ez needs to be along Jz and point along the z-axis. For a stationary flow
Ḃ = 0 implies than ∇ × E = 0 and hence Ez is constant. Hence the field
can be estimated using quantities valid outside the reconnection region, where
Ohms law tells us that

Ez = −uy0Bx0 .

Because the entire change of the magnetic field over the reconnection region
must amount to 2Bx0 , the magnitude of the total current carried by the current
sheet can be estimated

µ0JZ =
2Bx0

2δ
.

Combining the last three equations, we obtain an estimate for the inflow speed
uy0 ,

uy0 =
1

µ0σδ
, (9.20)

i. e. the inflow speed is just the diffusion speed! All we need to do now to
estimate whether this is fast or slow, is to compare this with the outflow speed
v and relate that to the overall geometry. Inserting eq. 9.18 in eq. 9.17 we
find that it is just the Alfvén speed, vA

.
= Bx0/

√
µ0ρ, (as we could easily have

guessed). We estimate the unknown width of the reconnection region, δ, using
our knowledge of the diffusion speed (eq. 9.20)

δ =
1

µ0σuy0
,

which we insert in the continuity equation, eq. 9.16, and solve for the inflow
speed uy0

uy0 =

(
Bx0√
µ0ρ

1

µ0σL

)1/2

. (9.21)

This can also be written as

uy0 = vA

(
1

vA

1

µ0σL

)1/2

, (9.22)

where the expression in parenthesis is just the inverse of the magnetic Reynolds
number, and hence

uy0 = vAR
−1/2
M .

In other words, reconnection is a slow process in the Parker and Sweet config-
uration because the magnetic Reynolds number is a large number in general.
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9.3 Petschek Reconnection

Comparison of light curves of flares on the Sun and on other astrophysical ob-
jects with the time scale expected from a Parker and Sweet-like reconnection
configuration showed that this is too slow by at least two orders of magni-
tude. Petschek (1964) solved this difficulty by allowing for standing Alfvén
waves which deflect the magnetic field far away from the actual reconnection
region, as sketched in Figs. 9.3 and 9.6. These waves allow for a much smaller

λδ
αβ

w

vl

w

vl

y

x

2L

Figure 9.6: The geometry of reconnection according to Petschek. Reconnec-
tion takes place in the rectangle 2λ × 2δ. The field is transported into the
reconnection area with a speed w and over a width 2L. This leads to a forma-
tion of standing Alfvén waves (dashed lines) at an angle α to the x axis. The
field is parallel to the x axis far away from the reconnection area but is bent
to an angle β with respect to the x axis.

reconnection region than the width of the inflow region, resulting in a much
higher inflow velocity. We denote by 2λ the total width of the reconnection
region, and by 2δ its total thickness. Inside the reconnection region, continuity
requires

w = vA
δ

λ
,

however, the situation is quite different outside the reconnection region proper,
where the standing Alfvén waves deflect the inflowing plasma. There continuity
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only requires

w = vA tanα

which can be a substantial fraction of the Alfvén speed, depending on the
unspecified angle α. Continuity of the flow across the boundary of the recon-
nection region requires that

w

vA
=
δ

λ
= tanα.

This angle α can’t be very large, because otherwise the tension force (deter-
mined largely by the angle β in Fig. 9.6) on the inflowing magnetic field would
prevent it from reaching the reconnection region. Hence there must be an op-
timal value for λ at which the inflow speed is maximized (but still smaller than
vA). Petschek found a way of estimating this λ as a combination of the angles
α and β, as well as of other plasma quantities. As the derivation is somewhat
lengthy and involved, we only give the final result for the inflow speed, or
reconnection speed, which is possible in a Petschek-type configuration,

w

vA
=≈ π

4 e lnRm

. (9.23)

The reconnection speed only decreases with the logarithm of the magnetic
Reynolds number. As is illustrated in Fig. 9.7, this makes a great difference
when we consider astrophysical plasmas, for which RM is generally large.

100 1000 10000 1e+05 1e+06 1e+07 1e+08 1e+09
Rm

10
-5

10
-4

10
-3

10
-2

10
-1

w
/V

A

w/VA ~ 1/ln(Rm)

w/VA ~ Rm
-1/2

Figure 9.7: Comparison of the reconnection speeds in the model of Petschek
(solid line) and the model of Parker and Sweet (dashed line).
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The reconnected field lines are not only expelled from the reconnection
region by the outflowing plasma, they also feel a tension force acting on them
which is due to the force

~F = q
(

~E + ~v × ~B
)

. (9.24)

acting on the particles constituting the plasma. This microscopic force is better
replaced by a macroscopic quantity, the force F acting on a unit volume of
plasma. This can be written as

F = ∇ ·M− ǫ0
∂( ~E × ~B)

∂t
, (9.25)

where the second term is just the temporal change in the Poynting flux and
Mij is the Maxwell stress tensor,

Mij = −δij
(
ǫ0
2
E2 +

1

2µ0

B2

)

+ ǫ0EiEj +
1

µ0

BiBj (9.26)

The first term describes the isotropic pressure exerted on the plasma by the
magnetic field. Because the electric field vanishes under normal circumstances
in the heliosphere, we neglect it in the following considerations of the remaining
part of M, (1/µ0)BiBj. It describes a tension. Consider a small surface d~S in
Fig. 9.8 whose normal vector points along the tangent to the magnetic field.
Obviously, the i component of the surface normal ~n is then ni = Bi/B. The
tension acting on dSi (and hence along Bi) is

dS nj BiBj/µ0 = dS Bj BiBj/(µ0B) = ni dS B
2/µ0. (9.27)

The sign in the tension term is opposite of that in the pressure term which
shows us that the two are indeed something else. Mij is the force per unit area
in the i direction exerted by the j component of the field. The force on the field
within the flux tube depicted in Fig. 9.8 is exerted on it by the j component
of the field coming from above ~B over the positive side of the surface dSj onto
the field on the negative side of the surface (inside the flux tube). Hence we
may envisage bent field lines as rubber bands under tension. When the holding
force disappears (as it does after the field lines leave the diffusion dominated
reconnection region), they try to straighten out thus acquiring an energetically
more favorable state. Reconnected field lines will thus tend to move away from
the reconnection region and pull the plasma with them.

The process of reconnection, of outflowing plasma and contracting field
lines probably generates a very turbulent medium in the vicinity of the re-
connection site. It will tend to generate this on a large spatial scale (small
wave number k) and the enormous amount of turbulent energy will cascade in
a Kolmogorov-type cascade to higher and higher wave numbers k where it is
absorbed by ions with a low Q/A ratio. The energy that is not absorbed is
available to ions with a higher Q/A. Figure 7.4 shows a cartoon of the cascade
process.
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dSj

~B

dSi

~B

Figure 9.8: The Maxwell stress tensor Mij describes the tension which the
electromagnetic field in the j direction exerts on the field in the i direction.

9.4 Consequences of Reconnection

9.5 Observations of Reconnection

Add interplanetary observations here (?)
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accelerated
particles

release of flare energy

electrons
non−thermal

loop footpoints

gamma ray emission
from nuclear processes

N

S

magnetic loop

v

v

v

plasmoid/filament

electrons

evaporation

Sun
chromosphere

hard X−rays

radiation

neutral line

Figure 9.9: Model of a flare on the Sun, after Lang (2000) with modifica-
tions. Add discussion of high outflow velocities as consequence of ongoing
reconnection, SDO results, Shibata.
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Chapter 13

Particle Transport

2014-04-09: corrections not done yet
In this Chapter, we will consider various transport effects on particles,

namely the Compton-Getting effect, adiabatic cooling or deceleration, and
drifts. Following the logics of a review by Fisk (1999), we will then assemble
all these processes into one equation, the so-called transport equation found
by Parker in 1965 and now called Parker’s equation.

13.1 The Compton-Getting Effect

~w f ′(v′)

Observer

z-axis ‖ to ~w

θ = 0 for ~w

~v′ = (v′, θ′, φ′)

~v = (v, θ, φ)

f(v)

Figure 13.1: The Compton-Getting effect can be
viewed as a relativistic aberration problem. See
text for discussion.

Consider the situation sketched
to the left in which an ob-
server is moving at a ve-
locity ~w through a back-
ground distribution of parti-
cles with a distribution func-
tion f(~v). The velocities of
the particles appear red- or
blue-shifted to the observer,
depending on their relative
motion,

~v′ = ~v − ~w, (13.1)

the observer sees a distribu-
tion function

f ′(~v′) = f(~v) = f(~v′ + ~w). (13.2)

The question we want to ask and answer in this section is what kind of effects
does the observer see which are only due to his motion relative to the distri-
bution’s rest frame. To put it more mathematically, how does the distribution

205
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function f(v) transform into the observer’s frame of reference? Following Glee-
son and Axford (1967, 1968), let us begin by assuming that the observer moves
much more slowly than the particles, i.e., |w| ≪ |v|, as is the case, e. g., with
an observer in the solar wind, in SEPs or GCRs. We will begin with this non-
relativistic case and give the relativistically correct results at the end. This
allows us to concentrate on the underlying ideas and circumvent the more com-
plex mathematical derivation. Because of the smallness of w compared to v,
we may use a Taylor expansion of f ′(v′),

f ′(v′) = f(v′ + w) = f(v′) + ~w · ∂f(v
′)

∂~v′
+O

(

(w
∂

∂v
)2f

)

= f(v′) + w cos θ′
∂f(v′)

∂v′
+O

(

w2 ∂
2f

∂v′2

)

(13.3)

This is a good approximation if f(v) is sufficiently smooth, e. g., if (v∂v)
nf =

O(f).

θ′

~e

v′

Figure 13.2: Geome-
try for ~S(v,~e). See
text for discussion.

Now it turns out that is is advantageous to con-
sider the differential flux S(v,~e)dv which is just the
number of particles with speeds between v and v + dv
which cross an unit area perpendicular to ~e per unit
time. Then we can define the differential current den-
sity, ~Sv(~v), by

~Sv(v) = S(v,~emax)~emax, (13.4)

where ~emax is the unit vector pointing in the direction
in which S(v,~e) has its greatest value.

Let us assume that ~emax is parallel to ~w. Then we
can obtain ~S ′

v by summing all particles crossing the unit
area in the velocity range (v′, v + dv′). The crossing is
proportional to v′ cos θ′ which takes the projection into

account. Therefore, we have

S ′
v(v

′)dv′ =

∫ 2π

0

dφ′
∫ π

0

dθ′
[

f(v′) + w cos θ′
∂f(v′)

∂v′

]

(v′)3 cos θ′ sin θ′dv′

(13.5)
Now we know that the following relation holds (see eq. ??? in ?),

∫ π

0

dθ′ cosn θ′ sin θ′ = −1

3

1

1 + n
cosn+1 θ′

∣
∣
∣
∣

π

0

and yields 2/3 for n = 2, and, hence

~S ′
v(v

′) =
4π

3
(v′)3

∂f(v′)

∂v′
~w. (13.6)
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So where ha f(v′) gone? This is an isotropic distribution, and hence its con-
tribution to S vanishes.

Let Uv(v) be the differential density with respect to velocity, i. e. , there are
Uvdv particles per unit volume with speeds in the interval [v, v+dv]. Summing
over all particles in [v, v + dv] gives

Uv(v)dv =

∫ π

0

dθ

∫ 2π

0

dφ f(v)v2 sin θdv = 4πv2f(v)dv. (13.7)

Next, we need to write Uv(v) in the moving frame of reference, i.e., by using
the primed quantities and eq. 13.2,

U ′
v′(v

′)dv′ =

∫ π

0

∫ 2π

0

dθ′ dφ′
[

f(v′) + w cos θ′
∂f(v′)

∂v′

]

(v′)2 sin θ′dv′ (13.8)

up to terms of order w2 ∂2f
∂v′2

. The integral over w cos θ′ vanishes, and we are
left with

U ′
v′(v

′) = 4π(v′)2f(v′) (13.9)

Thus, we have found how the number of particles in a velocity interval in one
frame, Uv(v) transforms into the frame moving at speed w relative to it,

Uv(v) = U ′
v(v

′). (13.10)

This is a remarkable finding, to first order in w/v the mean density at a speed
v is unaltered by the motion ~w!

Now differential densities and current densities are normally written as
functions of kinetic energy T in terms of energy intervals dT . For non-
relativistic particles with rest mass m0 we have

dT = m0vdv (13.11)

because T = 1
2
m0v

2 which, taking the derivative, transforms to dT
dv

= m0v. We
can transform to U(T ) and S(T ) by equating particle numbers

U(T )dT = Uv(v)dv ; SdT = Svdv. (13.12)

Thus, to summarize our results so far, we have with eqs. 13.6, 13.7, 13.9, 13.11,
and 13.12

U(T ) = U ′(T ′) =
4πv′

m0

f(v′) (13.13)

and

~S ′(T ′) =
4π

3

v′2

m0

∂f ′(v′)

∂v′
~w (13.14)
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Next, we will express the current density ~S(T ) in terms of T and differential
intensity U(T ). We prepare

f =
m0

4πv
U and v =

√

2T

m0

,

and throw everything together

S =
4π

3

v2

m0

∂f

∂v
w =

4π

3

2T

m2
0

∂f

∂v
w,

=
4π

3

2T

m2
0

m0

4π

∂
(
U
v

)

∂v
w,

=
1

3

2T

m0

∂

∂T

(
U

v

)
∂T

∂v0
w,

=
1

3

2T

m0

∂

∂T

(
U

v

)

m0vw,

=
1

3
2T

√

2T

m0

∂

∂T

(

U

(
2T

m0

)−1/2
)

w,

=
1

3
2T

√
T
∂

∂T

(
UT−1/2

)
w,

=
1

3
2T

√
T

(
∂U

∂T
T−1/2 − 1

2
T−3/2U

)

w,

=
1

3
2T

(
∂U

∂T
− 1

2

U

T

)

w,

=
1

3

(

2
∂U

∂T
T − U

)

w,

= −
(

U − 1

3

∂

∂T
(2TU)

)

w,

where the last step was only done to obtain a result which looks similar to
what one obtains in the relativistic case. Thus, we now have the expression
for the transformation of the differential current density, ~S,

~S ′(T ′) = −
[

U ′ − 1

3

∂

∂T ′ (2T
′U ′)

]

~ω. (13.15)

At relativistic speeds, the transformation given in eq. 13.2 must be replaced
by the more complicated one,

f(v, θ) = γ5(1 + v′w′ cos θ′/c2)5f ′(v′, θ′) (13.16)

where γ = (1 − w2/c2)1/2, c is the speed of light, and (v, θ) and (v′θ′) are
related by the usual relativistic velocity transformation.
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One can now go through the same steps as we did in the non-relativistic
case to obtain the transformation properties of U and S for the relativistic
case and finds:

U ′(T ′) = U(T ′) (13.17)

~S(T ′) = −
[

U ′ − 1

3

∂

∂T ′ · (αT
′U ′)

]

~ω (13.18)

where

α(T ′)
.
=
T ′ + 2m0c

2

T ′ +m0c2
(13.19)

In the non-relativistic case we have T ′ ≪ m0c
2, so the non-relativistic

transformation, eq. 13.15, follows from eq. 13.18 with T ′ ≪ m0c
2 and α(T ′) =

2. Eq. 13.18 is often rewritten in more compact form

~S(T ′) = −C(T ′)U ′~ω, (13.20)

where

C(T ′) =

(

1− 1

3

1

U ′
∂

∂T ′ (αT
′U ′)

)

. (13.21)

The quantitiy ~S is also called streaming. It is connected with the differ-
ential anisotropy ξ

ξ′(T ′) =
f ′
max − f ′

min

f ′
max + f ′

min

~emax =

(
∂f ′(v′)/∂v′

f(v′)

)

· w~emax

=
3~S

v′U ′ = −3C(T ′)

v′
~w (13.22)

For relativistic speeds T ′ → ∞ and for a power-law distribution U ′(T ′) ∝
(T ′)−µ we have

ξ′ = −3~w

v′

(

1− 1

3
T µ

(
∂

∂T

)
(
T 1−µ

)
)

= −3~w

v′

(

1− 1

3
T µ(1− µ)T−µ

)

= −3~w

v′

(

1− 1

3
(1− µ)

)

= − ~w

v′
(2 + µ) (13.23)

which is the result obtained by Compton and Getting (1935).

13.2 Adiabatic Cooling or Deceleration
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Figure 13.3: Scattering cen-
ters for particles are carried
outwards by the expanding
solar wind.

As energetic particles encounter the solar wind,
they experience adiabatic cooling or deceleration
which is due to the expansion of the solar wind.
Scattering centers are convected out by the ex-
panding solar wind. The inner energy, U , in a
relativistic gas is determined by

dU = dW = −pdV, (13.24)

where the pressure, p, in such a gas is given by

p =
1

3
n
T (T + 2T0)

T + T0
(13.25)

where n is number density and T is kinetic en-
ergy and T0 rest energy. With the usual defini-
tion of the Lorentz factor we have

p =
1

3
nT

γ + 1

γ
where γ =

1
√

1− v2/c2
. (13.26)

We now want to investigate how the kinetic energy, T , changes as the gas
expands (as it is doing work). With the above results we have

dU = −1

3
nT

γ + 1

γ
· dV =

−1

3
nT

T + 2T0
T + T0

· dV

dU = n · V · d〈E〉 = −1

3
nT

T + 2T0
T + T0

dV

dT

T
= −1

3

T + 2T0
T + T0

dV

V

where the last line follows from the observation that a change in energy can
only occur by chaning the kinetic energy, the rest energy remains unchanged.
Inserting the volume change dV

dV = (r + dr)3
4π

3
− 4π

3
r3

=
[
r3 + 2r2dr + 0(dr2)

] 4π

3
− 4π

3
r3

=
8π

3
r2dr + 0(dr2)

dV

V
=

8π

3

3

4π

r2dr

r3
= 2

dr

r
,

we thus obtain

1

T

dT

dt
= −1

3

T + 2T0
T + T0

2

r

dr

dt

= −1

3

T + 2T0
T + T0

2v

r
.
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But 2v
r
is actually ~∇~v in an isotropic (radially) expanding wind. Thus,

1

T

dT

dt
= −1

3

T + 2T0
T + T0

~∇ · ~v (13.27)

This is actually due to the scattering of particles off the irregularities in
the fields frozen into the solar wind. We will investigate this in more detail
later on.

13.3 Drifts or Streaming

We follow Isenberg and Jokipii(1979) and will show that, for a magnetic field of
arbitrary spatial variation, a nearly isotropic distribution of charged particles
drifts with a velocity 〈~vD〉.

To begin, consider a situation in which the particle gyroradius

Rg =
1

q

~B × ~p

B2
(13.28)

is much smaller than any scale of variation of the magnetic field,

Rg ≪ L=̂

∣
∣
∣
∣

1

B

∂Bi

∂xj

∣
∣
∣
∣

−1

(13.29)

We will relax this requirement shortly, so just bear with it for the time being.
The drift of the particle is given by the general expression

〈~vD〉 =
pv

3qB4

(

B2(~∇× ~B) + ~B × ~∇B2
)

(13.30)

This result is obtained for an isotropic pitch-angle distribution.
Now consider a ‘nearly isotropic’ distribution function. A perfectly isotropic

particle distribution must be homogeneous in space. In our case, in which we
are investigating the transport of particles in interplanetary space, this space
is permeated by a magnetic field. Now a static magnetic field can not produce
any observable effect on such a particle population because a magnetic field
performs no work. This means that any observable drift requires the presence
of some level of anisotropy or spatial inhomogeneity in the plasma.

So let us assume a particle distribution, n, with a small anisotropy, δn,

n = n0 + δn(Ω), where

n0 =
1

4π

∫

ndΩ ≫ δn(Ω) ∝ ∇n0,

where n0 is the isotropic part of the distribution. Moreover, let’s assume that
temporal changes of the system are smaller than other time scales
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∣
∣
∣
∣

∂A

∂t

∣
∣
∣
∣
≪
∣
∣
∣
∣

A

τ

∣
∣
∣
∣
≪ |ωA|, (13.31)

where ωi =
qBi

γmc
is the gyrofrequency and A some macroscopic parameter.

The distribution function for these particles then satisfies the Boltzmann
eq.

ṅ+ ~v · ~∇n+
q

γmc
(~v × ~B)

∂n

∂~v
= −n− n0

τ
, (13.32)

where the right-hand side is the collision term which forces the system toward
equilibrium or isotropy in a typical time τ .

Next we multiply eq. 13.32 by v and average over all directions,

Ḟi +

∫

vivj
∂n

∂xj
dΩ +

q

γmc

∫

vi(~v × ~B)j
∂n

∂vj
dΩ = −Fi

τ
, (13.33)

where Fi =
∫
vindΩ. Now with n0 =

1
4τ

∫
ndΩ ≪ δn we have

∫

vivj
∂

∂xj
(n+ δn)dΩ ≈

∫

vivj
∂n0

∂xj
dΩ =

v2

3

∂n0

∂xi
(13.34)

The third term is more complicated. First we note that

∂

∂vj

(

vi(~v × ~B)jn
)

= δij · (~v× ~B)j + vi
∂

∂vj
(~v× ~B)jn+ vi(~v× ~B)j

∂n

∂vj
. (13.35)

Now (~v × ~B)j is independent of vj, and hence

∂

∂vj
(~v × ~B)j = 0. (13.36)

Thus,

∂

∂vj

(

vi(~v × ~B)jn
)

= δij(~v × ~B)jn+ vi(~v + ~B)j
∂n

∂vj
(13.37)

Integrating this expression over all directions must vanish because every con-
tribution from one combination of components is cancelled by another,

∫
∂

∂vj

(

vi(~v × ~B)n
)

dΩ = 0. (13.38)

Thus we have

~̇F +
v2

3
~∇n0 −

q

γmc
(~F × ~B) =

~F

τ
. (13.39)

Now Ḟ can be neglected because of the assumption given in eq. 13.31. We
want to solve this for ~F to derive the distribution function. This can be done
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by writing the cross product with the fully anti-symmetric Levi-Civita tensor,
εijh,

(~F × ~B)i = εijhFjBk. (13.40)

With this we can solve for Fi,

Fi = −v
2τ

3

∂n0

∂xj
· (δij − εijhωkτ)

−1. (13.41)

This expression is still a little unwieldy and we use the following approximation

(δij − εijhωkτ)
−1 ≈ δij + εijhwkτ + wiwjτ

2

1 + w2τ 2
(13.42)

to obtain an approximate solution,

Fi = −v
2τ

3
· δij + εijhωkτ + ωiωjτ

2

1 + ω2τ 2
∂n0

∂xj
. (13.43)

The coefficient of −~∇n0 can be thought of as a diffusion tensor. The symmetric
part,

κsij =
v2τ

3
(1 + ω2τ 2)−1(δij + ωiωjτ

2), (13.44)

produces the anisotropic scattering or diffusion. The antisymmetric part con-
tains the drift effects. In the limit ωτ ≪ 1, i. e. for very efficient scattering,
we have an isotropic diffusion tensor

κij
ωτ≪1−→ v2τ

3
δij (13.45)

On the other hand, for weak scattering, as we assumed in eq. 13.31, we have
ωτ ≫ 1 and thus,

−v
2

3

εijhωkτ

ω2τ 2
· τ ∂n0

∂xj
(13.46)

is the antisymmetric part. With ω = qB
γmc

we then obtain

−pvc
3q

εijh
Bk

B2

∂n0

∂xj
. (13.47)

Adding both symmetric and antisymmetric parts, we obtain

Fi = −κ(s)ij

∂n0

∂xj
− pvc

3p
εijh

Bk

B2

∂n0

∂xj
(13.48)

We have now finally found the quantity Fi which is called ‘streaming’ and is
related to drifts.
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Let us now investigate what it means and how it can be used. Consider an
isotropic distribution, n = n0, and insert it into the Boltzmann eq., eq. 13.32

ṅ+ ~v~∇n+
q

γmc
(~v × ~B)

∂n

∂~v
= −n− n0

τ
, (13.49)

which we will now average over directions, i. e. perform the integration
∫
dΩ.

The right-hand side vanishes by definition. The last term on the left-hand side
vanishes as well because the velocity distribution is assumed to be isotropic
and hence

∫
〈∂n
∂v
〉dΩ = 0. Thus, only the following survives this directional

averaging,

ṅ0 +
∂Fi

∂xi
= 0. Why? (13.50)

We can now insert the streaming from above (eq. 13.48) to obtain

ṅ0 =
∂

∂xi

(

κ
(s)
ij

∂n0

∂xj

)

+
pvc

3q
εijh

(
∂Bj

∂xiB2

)
∂n0

∂xn
= 0 (13.51)

This is simply an equation which describes particles differing according to κ
(s)
ij

and convecting with a convection speed

〈vD〉k =
pvc

3q
εijh

∂

∂xi

Bj

B2
(13.52)

This can be rewritten in the form

〈~vD〉 =
pvc

3q

(
1

B2
~∇× ~B +

1

B4
~B × ~∇B2

)

(13.53)

which is identical to the first drift speed which is derived under entirely different
assumptions! The reason for this is intuitively clear. Imagine a ‘local gyro-
orbit’ - the trajectory a particle would take in a uniform field. The isotropic
distribution guarantees that, at any point, there will be a particle moving along
any given portion of that ‘local gyro-orbit’.

~B

Figure 13.4: A particle can
leave its local gyro-orbit.

In a spatially varying field, the particle will
leave its local gyro-orbit after a short time (see
Fig. 13.3 to the left). It will always be replaced
by another particle for the next portion of its
original local gyro-orbit. In addition, the ensem-
ble averaging will smooth any sharp changes in
the field over a spatial scale of 2 gyro-radii. Thus,
the ensemble averaging over an isotropic distri-
bution and the first-order approximation pro-
duce the same result.
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Figure 13.5: Particle drift at the heliospheric current sheet.

13.4 An Example of Drifts with a discontinu-

ous ~B-field configuration

Following Isenberg and Jokipii (1979), let us consider an extended thin neu-
tral (current) sheet such as an interplanetary sector boundary. Its extent is
certainly much smaller than the gyroradius of a cosmic ray.

Consider
~B = B0(2θ(z)− 1)~ex, (13.54)

where θ(z) is the Heaviside step function. The motion of the guiding center is
not continuous or smooth, it moves in steps along the y-direction, as shown in
Fig. 13.5, where the quantities used in the following discussion are also defined.
Nevertheless, we can compute the particle drift velocity. Consider a particle
in the region z ≥ 0 with a temporary guiding center at position z = ξ ≥ −R.
As long as |ξ| < R it will drift a distance R sinϑ in the y-direction while it
moves a distance R(π − ϑ) along its gyro-orbit or rather it moves by 2R sinϑ
along the y-direction while it moves 2R(π − ϑ) along its gyro-orbit. So the
drift velocity of its particle is

~V0 = v · sinα sinϑ

π − ϑ
· ~ey for |ξ| < R

= 0 for |ξ| ≥ R,

where α is the particle pitch angle and θ = arccos(ξ/R) as defined in Fig. 13.5.
Now consider an isotropic distribution of particles in this field. We sum

over all the individual particle velocities and average over pitch angle to obtain
the total flux of particles.

~F =
N

4π

∫

dΩ

∫

dξf(ξ)~VD(ξ,Ω). (13.55)

ϑ

ϑ

ξ = −R

0 < ξ < R

z

Here, N is the local (uniform) particle
number density and f(ξ) is the distribution
function which gives the number of particles
with guiding centers at z = ξ.
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The guiding centers will be uniformly dis-
tributed along the z direction, se Fig. 13.4.
In the region |z| ≤ R they can be described
by ξ = R · cosϑ where θ varies from 0 to π for
ξ = +R to ξ = −R. In this region we have

f(ξ) =
π − ϑ

π
for z > 0 (13.56)

and we have the same contribution for z < 0
because particles in z > 0 have their guiding
centers in z > 0 or in z < 0. Thus,

~F =
N

2π

∫ 2π

0

dφ

∫ π

0

dα sinα

∫ R

−R

dξ
π − ϑ

π
v sinα

sinϑ

π − ϑ
~ey

=
Nv

π

∫ π

0

dα sin2 α

∫ R

−R

d(R cosϑ) sinϑ~ey

= (−1)2
Nv

π

p

qB

∫ π

0

dα sin3 α

∫ π

0

dϑ sin2 ϑ~ey

=
Nv

π

p

qB

2π

3
~ey =

2

3

Nvp

qB
~ey,

where we have used

∫ R

−R

dξ → −
∫ 0

π

dθ sin θ →
∫ π

0

dθ sin θ (13.57)

in the step between line 2 and 3 as well as the integral identities

A :

∫ π

0

dx sin2 x =

[

−1

2
(x− sin x cos x)

]π

0

=

[

−1

2
x

]π

0

= −π
2
,

B :

∫ π

0

dx sin3 x =

[

−1

3

(
sin2x cos x + 2 cos x

)
]π

0

=

[

−2

3
cos x

]π

0

=
4

3
,

and thus A ·B = −2π

3
.

With the general definition of a flux

~F = N · ~vD, (13.58)

we now have the expression for the drift velocity of an isotropic distribution
of particles along the current sheet described by eq. 13.54,

~vD =
2

3
v
p

qB
~ey (13.59)
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Obviously, the requirement |R| ≪ | 1
B

∂Bi

∂xj
|−1 is not satisfied, but the result

for the drift velocity is still valid. This can be seen by inserting this field
configuration into the general expression for the drift velocity.

The requirement that the spatial scale of field changes be small compared
to the gyro-radius is replaced by the ensemble average over the isotropic distri-
bution. The same holds true for the requirement that |∂A

∂t
| ≪ |A

τ
| ≪ |ωA|. In

an isotropic distribution, there will always be a particle which takes the place
of a particle which leaves its local gyro-radius, as discussed at the end of the
previous subsection.

13.5 Putting Everything Together

So far, we found two expressions for the streaming of particles. From the
considerations of the Compton-Getting effect we found

~S(T ) = −C(T )U~ω, where C(T ) =

(

1− 1

3U

∂

∂t
(αTU)

)

. (13.60)

We also found a contribution which is due to drifts which is given by

Fi = −κsij
∂n0

∂xj
+
pvc

3q
ξijh

Bj

B2

∂n0

∂xk
(13.61)

The two derivations did not use the same nomenclature. n0 is defined as the
isotropic part of a particle distribution function n such that n = n0 + δn(Ω)
where

n0 =
1

4π

∫

dΩu≫ δn(Ω) (13.62)

On the other hand, U was defined as the differential density with respect to
velocity

Uv(v) =

∫ 2π

0

dϕ

∫ π

0

dϑ sinϑf(v)v2

Uv(v) =

∫

dΩv2f(v)

=

∫

dΩf(~v)

Thus, n0 and U are the same up to a normalization factor 4π. However, no
mention of the normalization of U and u0 was ever made and so, without loss
of generality, we will equate U and n0 and use U from now on.
The relative velocity, ~w, between the two frames of reference in the Compton-
Getting derivation of the streaming was

~w = −~Vsω (13.63)
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as the cosmic rays were assumed to be isotropic in a stationary frame of refer-
ence.
Now consider again the direction-averaged Boltzmann-equation (eq. 13.50) in
our new nomenclature

U̇ + ~∇ · ~S = 0. (13.64)

In a stationary state we have
~∇ · ~S = 0. (13.65)

All we need to do now is to insert all the terms of ~S to find the general transport
equation for cosmic rays. We also need to remember the definition of the drift
velocity which we derived from the Boltzmann equation. Then we can put
everything together to obtain

~∇ · S = −~∇ · κ(s) · ~∇U diffusion,

+ 〈~vD〉~∇U drifts,

+ ~∇ · ~VsωU convection,

− 1

3
~∇ · ~V ∂

∂T
(αTU) = 0 adiabatic cooling.

This is the general equation for U , the differential number of galactic cosmic
rays, i. e., the number of particles per unit volume and energy. This equation
was first derived by Parker (1965).

Let us discuss the cosmic ray transport equation. It describes galactic
cosmic rays which diffuse among the irregularities and turbulence of the mag-
netized solar wind. This diffusion is governed by the diffusion term which is
determined by the diffusion tensor. This was defined as the symmetric part
κ(s) of a more general ‘diffusion tensor’. Because of the gradient of cosmic rays
(there are more cosmic rays outside the heliosphere than inside) this diffusion
amounts to an inward flux of particles. This inward diffusion is balanced by
the outward convection at the speed of the solar wind. If we only consider
these two terms, we have a classical diffusion-convection equation such as, for
example, that of heat conduction through running water. In one dimension
and for a spatially homogeneous diffusion tensor, we would have

κ∂2xu = vD∂xu. (13.66)

This can be rewritten
(

∂x −
v − ∂xκx

κ

)

(∂x − 0)U = 0 (13.67)

which has the solution

U(x) = C1 + C2e
v−∂xκ

κ
x. (13.68)



13.5. PUTTING EVERYTHING TOGETHER 219

0,0 0,5 1,0
x

0,0

0,5

1,0

1,5

2,0

U
(x

)

v/k = 10

v/k = 5

v/k = 2

v/k = 1

v/k = 0.1

v/k = 0

Solutions of the Convection - Diffusion equation
U(x) = C

1
 + C

2
 e

 (v/k) x

U
0
=1

U
1
=2

Figure 13.7: Solutions of the convective diffusion equation.

For ∂xκ = 0 (as assumed above), we have

U(x) = C1 + C2e
v
κ
·x (13.69)

For small values of v/κ, this reduces to the ordinary diffusion solution. For
non-zero v/κ, there is an exponential increase with growing x, as illustrated in
Fig. 13.7. This results in a radial gradient of typically a few percent per AU
in the intensity of cosmic rays (Teegarden et al., 1974).

∂rU

U
≈ few percent/AU (13.70)

However, we aren’t yet through our discussion of Parker’s equation. As
the cosmic rays bounce off the irregularities in the expanding wind they are
adiabatically cooled. This happens because they are isotropic (nearly) in the
frame of reference that is convected out by the solar wind and expands with
it. This cooling is given by the adiabatic cooling term.
Finally, the particles experience drifts which are due to gradients and curva-
tures of the mean magnetic field. These ensemble-averaged drifts can also be
expressed as a convection at drift speed

~vD =
pvc

3q

(

~∇×
~B

B2
+

1

B4
~B × ~∇B2

)

(13.71)
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In the vicinity of the current sheet the first term dominates. The effect of
drifts can be expressed as a ‘streaming’ of particle distributions mormal to the
magnetic field

~S ′ =
pvc

3q

~B

B2
× ~∇U. (13.72)

This is a cross product and was found to be the off-diagonal component of the
diffusion tensor. We found that

~∇ · ~S ′ =
pvc

3q
~∇×

~B

B2
· ~∇U = ~vD · ~∇U. (13.73)

This is a divergenceless convection at the drift speed. Interestingly each of
the four terms in Parker’s transport equation turns out to be of comparable
magnitude (Jokipii et al., 1977).

We can treat the diffusion-convection equation a little more generally than
before. Including adiabatic deceleration, we have

−κ∂2rU + ∂r(CU ~V ) = 0 (13.74)

where C is now the Compton-Getting factor. We assume ∂r~V = 0 and ∂rC = 0.
Then we again obtain a radial gradient in U

∂2rU =
C|~V |
κ

∂rU

∂rU

U
=

CV

κ
C1 = 0 because U(0) = 0

∂U

U
=

CV

κ
dr

lnU =
CV

κ

∫

dr

where we have performed an integration in the steps between lines 1 and 2 and
lines 2 and 3. With this we can obtain a ‘modulation factor’ M

M =
U(r = robs)

U(r = rout)
(13.75)

by integrating from an inner boundary at the observer, e. g. , at Earth, out to
r = robs, the source of galactic cosmic rays outside the heliosphere at r = rout

M =
U(r = robs)

U(r = rout)
= exp

(

−CV
κ

∫ rout

robs

dr

)

.

For a diffusion coefficient which depends on the particle rigidity P = γmv
q

via

καP · v, (13.76)
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we obtain

M = exp

(

−const. · 3CV
v

∫ rout

robs

dr

λmfp

)

(13.77)

where the integral counts the number of scatters or mean free paths (mfps)
of the particle. λmfp is the particle’s mean free path. The quantity

φ =
3CV

v

∫ rout

robs

dr

λ(r)
(13.78)

is called the modulation parameter and can be interpreted in terms of an
effective potential of a conservative force field. It varies from about 350 MeV
at solar activity minimum to about 750 MeV at solar activity maximum.

Parker’s transport equation

~∇ · ~VsωU − 1

3
~∇ · ~V ∂

∂T
(αtU) + ~vD ~∇U = ~∇ · κ~∇U (13.79)

looks deceitfully simple. In fact, no analytic solutions are known for it in the
general form shown here. We have investigated some highly simplified versions
of it but cannot discuss it in full detail.

Numerical solutions use Parker’s equation superimposed on (magneto) hy-
drodynamic codes that describe heliospheric structure to simulate the trans-
port of galactic cosmic rays throughout the heliosphere. Nevertheless, there
are several problems apart from the sheer size of solving the coupled MHD
equations that describe the heliosphere in 3-d:

1. The expression for the diffusion tensor κ is uncertain or even controver-
sial. Obviously it has to do with the process of scattering. As we will
see in section (next section) we don’t even really understand the mean
free path of energetic particles, let alone their scattering processes.

2. The magnetic field in the heliosphere is also an important factor in
Parker’s equation. It enters through the drift term but also through the
diffusion tensor. Diffusion along ~B is much easier than perpendicular to
~B.

So it turns out that we need to understand better the scattering process
and the magnetic field. The latter was believed to be well modeled by an
Archimedian spiral (Parker spiral), but observations by Ulysses have cast doubt
on this. Low-energy particles (∼50 MeV electrons and sub-MeV protons)
are accelerated at shocks driven by co-rotating interaction regions. These
regions extend in heliospheric latitude about up to the heliographic extent of
the streamer belt. However, Ulysses saw accelerated particles occuring like a
clock every solar rotation at heliospheric latitudes which greatly exceed those of
the streamer belt and also of the locations where CIRs were observed, always
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below 40 degrees. Ulysses saw these reoccuring particle increases up to the
highest latitudes observed, above 80 degrees.

If the magnetic field follows the Parker Archimedian spiral, then there
would have to be strongly enhanced cross-field diffusion to transport these
particles up to those high latitudes. However, this seems highly unlikely.

The problem could be addressed by a process called footpoint motion. A
systematic motion of footpoints across all latitudes is suggested by Fisk (1996).
This model is based on the observation that coronal holes exhibit nearly rigid
rotation with the Sun whereas the photosphere rotates differentially with a
pronounced latitude dependence of the rotation rate. This systematic motion
of footpoints would connect low and high latitudes and allow efficient transport
of particles along field lines.

A random footpoint motion had already been put forward by Jokipii and
Parker (1969). In their picture, random photospheric motions let the foot-
points of magnetic field lines diffuse across the photosphere. This process too
allows to connect low and high latitude regions in the heliosphere.

Consider for a moment the implications of such footpoint motion – be it
systematic or random does not really matter. It will dramatically alter the
heliospheric magnetic structure. While old models predicted nearly radial
magnetic fields over the solar poles this would no longer be the case. For
cosmic rays this would mean that they would no longer have easy access over
the poles – an observation indeed made by Ulysses. On the other hand, such
configurations would have a highly complicating consequence on the drift terms
in the transport equation. Would they even conspire to average out to a
diffusion-like behavior? Then they would have to be included in the diffusion
tensor.

And this is where we encounter the next problem. There is no reliable
and independent way to calculate the diffusion tensor. Inspite of the fact that
we should be able to neglect higher-order terms in a power-series expansion
of magnetic field fluctuations (so-called quasi-linear theory), the mean free
paths calculated with such approximations strongly disagree with observations.
Therefore, many modelers fit the diffusion tensor to the observations which
can hardly be called a satisfactory state. If we consider diffusion along the
magnetic field, we find far less scattering than we expect, while we find far
more scattering across field lines than we can explain.

This is why footpoint motion may be a key to solving the problem. It
mimicks cross field diffusion.
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13.6 The Focused Transport Equation

We begin our considerations with the Liouville equation

Df

dt
= 0 = ∂tf + ~v∂~rf + ~F∂~pf = 0, (13.80)

where

f(~r, ~p, t) =
d6n

dr3 p2dp sinϑdϑdϕ
,

=
d6n

dr3p2dpdΩ
.
=

1

p2
f̂(~r, ~p, t) (13.81)

We can write this with the differential directional intensity, I(~r, E, ~Ω, t), using
dE/dp = v. Then

f =
d6n

dr3p2dpdΩ
=

v

p2
d6n

dr3dEdΩ
.
=

1

p2
I(~r, E, ~Ω, t). (13.82)

The units of I(~r, E, ~Ω, t) are
[

I(~r, E, ~Ωmt)
]

=
(
cm2 sr s MeV

)−1
.

The differential flux, J(~r, E, t), is given by

J(~r, E, t) =
1

4π

∫

dΩ I(~r, E, ~Ω, t) (13.83)

and particle number density by

d4n

dr3dE
=

1

v

∫

dΩI(~r, E, ~Ωt) =
4π

v
J(~r, E, t) = N(~r, E, T )

where the second last step is valid for an isotropic differential directional in-
tensity, I.

~M

z

Figure 13.8: Mirror force.

Next, we consider gyrotropic distributions in
which the phase angle, ϕ, of the gyration is irrel-
evant. Then only the pitch angle of the particle
is important and the particle can only move along
the magnetic field. Thus, we have a reduced phase
space density

f = f(z, µ, t),

where z is the length along the magnetic field and
µ = cosα is the cosine of the pitch angle. Thus,

v‖ = vz = |v| · µ, and ~p =
(
p‖
~p⊥

)

=

(
µp
~p⊥

)
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The force acting on a particle with magnetic moment ~M is the magnetic mirror
force (Fig. 13.6)

Fz = − ~M
∂B

∂z
= − p2⊥

2γmB

∂B

∂z

Because of gyrotropy we have

∂f

∂~p
=

∂f

∂p‖
=





∂f
∂p‖

0
0



 , i.e.,
∂f

∂p⊥
= 0.

Thus we can take only the derivative in the parallel direction,

∂f

∂p‖
= −p

2(1− µ2)

2γmB

∂B

∂z

1

p

∂f

∂µ

=
1− µ2

2B

∂B

∂z
v
∂f

∂µ
, (13.84)

because p = mγv. Thus, we can write the force term in Liouville’s equation
in the following way:

~F · ∂f
∂~p

= − p2⊥
2γmB

∂B

∂z

and

~F · ∂f
∂~p‖

= −p
2(1− µ2)

2γmB

∂B

∂z

1

p

∂f

∂µ
=

1− µ2

2B

∂B

∂z
v
∂f

∂µ
, (13.85)

because p = γmv. Defining a characteristic focusing length

L(z)
.
=

B(z)

∂B/∂z
, (13.86)

we have now
∂f

∂t
+ µv

∂f

∂z
− 1− µ2

2L(z)
v
∂f

∂µ
= 0.

This is Liouville’s equation without any scattering processes taken into ac-
count. These can be included in the equation as stochastic processes via a
diffusive term

−∂µ
(

Dµµ(µ)
∂f

∂µ

)

,

or, equivalently, a Fokker-Planck term

−1

2
∂µ

(〈∆µ2〉
∆t

· ∂f
∂µ

)

.

We can also add a source term S(z, µ, t), e. g., an isotropic distribution of
energetic particles at the Sun.
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a) b) c)

Figure 13.9: Three possible situations described by transport equations. a)
efficient scattering, or. equivalently, a short mean free path is described by
ordinary diffusion. b) some scattering, or intermediate mean free path is de-
scribed by focused transport. c) inefficient scattering, or long mean free path
is descrbed by “scatter-free” propagation. After ?.

Thus, we have derived the so-called ‘focused transport equation’, (Roelof ,
1969)

∂tf + µv∂zf − 1− µ2

2L(z)
v∂µf − ∂µDµµ(µ)∂µf = S(z, µ, t) (13.87)

Here, Dµµ(µ), is the pitch-angle diffusion coefficient or tensor.
There are two extreme solutions to this equation. They are shown in

Fig. 13.9.

r

Sun

~B

u

ωr

Ψ

Figure 13.10: The
Parker magnetic field
spiral.

Let us first consider the scatter-free propagation.
The angle subtended by the magnetic field, ~B, and
solar wind velocity, ~vsw is Ψ, the so-called Parker-
spiral angle (see Fig. 13.6). With solar rotation rate
Ω and the radial solar wind speed, vsw, we have

cosΨ =
1

√

1 + (r/(vsw/Ω))2
=

1
√

1 + (rΩ/vsw)2
.

As the solar wind plasma moves by an observer, he
senses an electric field which is due to the convection
of the frozen-in magnetic field,

~E = ~vsw × ~B = |~vsw| · | ~B| · sinΨ.

In the frame of the observer, energetic particles
streaming by him experience a drift force leading
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to a drift velocity,

~vD = −
~B × ~vsw × ~B

B2
= |~vsw| sinΨ.

This drift velocity leads to a co-rotation of energetic particles. In other words,
they follow the magnetic field lines. They remain stuck to their field lines.
This means that particles injected at the Sun fill the field line which they were
injected on. A pulse injected onto one field line at the Sun propagates outward
along the same field line.

t1

t2

Figure 13.11: Particles re-
main bound to their orig-
inal magnetic field line.

Particles remain attached to their original field
line (Fig. 13.6). This is important when consider-
ing time series of solar particle events. They neces-
sarily consist of a time-dependent injection profile
and a convection time profile. Add swoosh plot
for discussion.
Next, consider the next case with strong diffusion
in pitch angle, i.e., where the particle distribution
function can be written as a sum of an isotropic
part and a small anisotropic contribution,

f(µ, z, t) = f0(z, t) + f1(µ, z, t),

where f1 ≪ f0 and ∂tf1 ≪ 1/τµ and ∂zf1vsw ≪
1/τµ, where τµ is a typical time scale for pitch-
angle diffusion. In other words, we assume that all

temporal changes are slow compared to pitch-angle diffusion (second assump-
tion). This is also to be the case for changes which are due to the convection
of a flux tube by the observer (third assumption). In this assumption of strong
pitch-angle scattering focusing is unimportant, i.e., the times between scatter-
ing events are short. In this limit of infinite focussing length, L(z) −→ ∞ , we
have

∂tf + µv∂zf − ∂µ (Dµµ(µ)∂µf) = 0. (13.88)

We now make the assumption that Dµµ ∼ 1/τµ and that the assumptions
mentioned above are valid. Then we can try to convert eq. 13.88 into a spa-
tial diffusion equation. This can’t always be done. Diffusion can’t be faster
than the particles and if one uses spatial diffusion indiscriminantly, such non-
physical effects could occur. In addition to the assumptions mentioned above,
we assume that the anisotropy, f1(µ, t, t), describes only that, i. e. , that

∫ +1

−1

dµf1(µ) = 0.

Then we can rewrite eq. 13.88 as

∂tf0 + ∂tf1 + µv∂zf0 + µv∂zf1 − ∂µ (Dµµ(µ)∂µf1) = 0. (13.89)
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We now average over pitch angle µ, and use

〈f(µ)〉 .= 1

2

∫ +1

−1

dµf(µ) and 〈f0〉 = f0

Then we have, by averaging eq. 13.89,

1

2

{∫

dµ∂tf0 +

∫

dµ∂tf1 +

∫

dµµv∂zf0 +

∫

dµµv∂zf1 −
∫

dµ∂µ (Dµµ(µ)∂µf1)

}

= 0.

The second term vanishes by definition and the third term does so too because
the integrand is an odd function of µ. The last term vanishes as well because
there is no flux at µ = ±1. Thus, we are left with

∂tf0 +
1

2

∫ +1

−1

dµ µv∂zf1 = 0 (13.90)

or, in other words,

∂tf0 = −1

2

∫

dµ µv∂zf1.

We insert this in eq. 13.89 and obtain

−1

2

∫ +1

−1

dµ µv∂zf1 + ∂tf1 + µv∂zf1 − ∂µ(Dµµ(µ)∂µf1) = −µv∂zf0,

where we have retained all terms involving f1 on the left hand side. Now
according to our assumptions, the first three terms are negligible compared to
1/τµ, and hence, we are left with

∂µ (Dµµ(µ)∂µf1) = +µv∂zf0.

Next, we integrate over pitch angle,

∫

dµ∂µ (Dµµ(µ)∂µf1) = +

∫

dµµv∂zf0, (13.91)

Dµµ(µ)∂µf1 = +
µ2

2
v∂zf0 + C1. (13.92)

We can determine the integration constant, C1, by considering that the flux
at µ = ±1 vanishes, and, hence

Dµµ(µ)∂µf1|±1 = 0.

Thus, at µ = ±1

C1 = −v
2
∂zf0
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and, hence, eq. 13.92 evaluates to

∂µf1 = −∂zf0
v

2

1− µ2

Dµµ

.

Integrating once more we have

f1 = −∂zf0
v

2

[∫

dµ′1− (µ′)2

Dµ′µ′

(µ′)

]

+ C2

where the exact positioning of the square brackets does not matter, as we are
only considering an integration constant. We now insert this into eq. 13.90

∂tf0 = −v
2

∫ +1

−1

dµ µ
∂f1
∂z

,

=
v2

4
∂z

∫ +1

−1

dµ µ

([∫

dµ′1− (µ′)2

Dµ′µ′

]

+ C2

)

∂zf0,

=
v2

4
∂z

[∫ +1

−1

dµ µ

∫

dµ′1− (µ′)2

Dµ′µ′

+

∫ +1

−1

dµµC2

]

∂zf0.

The term involving the integration constant, C2, vanishes because it is an odd
function of µ. Hence, we are left with

∂tf0 =
v2

4
∂z

[∫ +1

−1

dµ µ

∫

dµ′1− (µ′)2

Dµ′µ′

]

∂zf0 = ∂z (κ(z)∂zf0) , (13.93)

where

κ(z) =
v2

4

∫ +1

−1

dµ µ

∫

dµ′1− (µ′)2

Dµ′µ′

, (13.94)

i. e. we have found a diffusion equation with diffusion coefficient κ(z) which
is given entirely by the pitch-angle diffusion coefficient, Dµµ.

In other words, we have found that pitch-angle diffusion translates to spa-
tial diffusion via the diffusion coefficient given in eq. 13.94.

In fact, the result we found is more general than the assumptions appear
to imply. The diffusion coefficient has the same functional form for finite
scattering length, L(z).

The diffusion coefficient κ(z) parallel to the magnetic field is not the radial
diffusion coefficient in the heliosphere. As long as cross-field diffusion (or
footpoint motion) does not dominate, we can write

κr = κ(z) · cosψ (13.95)

where ψ is the spiral angle between the radial and magnetic field directions.
The mean free path is given by

λ‖ =
3κ(z)

v

as is usual in diffusive problems.
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13.7 Pitch-Angle Scattering II

We have modeled the transport of cosmic rays (solar or galactic) with the two
transport equations (Parker’s and focussed) in which pitch-angle scattering
was an important physical process. But how does it work and how does it
depend on the magnetic field and fluctuations in it?

We have already inroduced pitch-angle scattering as an example of wave-
particle interactions in section 2.6 and considered wave-particle interactions
as a mechanism for solar wind acceleration in Sec. 4.3.1 and 4.3.3. Let us
now take another look at it by considering the interaction of cosmic rays with
Alfvén waves. For simplicity’s sake we will consider linearly polarized Alfvén
waves, we will see that this is not really a restriction on the result.

Consider the wave packet depicted in figure 13.12. It has a length L ∼ λ
and we assume that it is linearly polarized in the x-direction.

wave packet

wave

envelope

L

Figure 13.12: An archetypical
wave packet consists of wave
and evelope.

Now consider a cosmic ray encountering
the wave packet from the left. We will choose
a frame of reference in which the wave is at
rest. We write the perturbation in the mag-
netic field (the wave) as

δB⊥ = δB sin(kz − ωt)~ex

superimposed on an average background
field B0. The cosmic ray gyrates around
B0 with gyrofrequency Ω and, hence, the y-
component of its velocity also has this fre-
quency

vy = v⊥ sin(Ωt+ Φ), where Ω =
qB

mγ
,

where Φ is the random phase between the
cosmic ray and the wave packet. The z component of the Lorentz force acting
on the cosmic ray (along the magnetic field ~B0) is given by

q
(

~v × ~B
)

z
= −qvyδB⊥

because we assumed that δB is linearly polarized in the x-direction. Then

−q(vyδB⊥) = −qv⊥δB sin(kz0 + kvzt− ωt) sin(Ωt+ Φ)

where z = z0 + vz · t is the position of the cosmic rays guiding center. Using
the relation

sinα sin β = cos(α + β)− cos(α− β)
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we rewrite the product of the sines as

−q
(

~v × ~B
)

z
=

1

2
qv⊥δB ∗

∗ [cos ((kvz − ω + Ω) · t+ (kz0 + Φ))

− cos ((kvz − ω − Ω) · t+ (kz0 − Φ))] .

As the cosmic ray moves across the wave at velocity vz > 0 the first term will
have a high frequency and will average out. However, the second term has
lower frequency and if κvz − ω − Ω ≈ 0 it will not average out. This is, of
course, nothing else but resonance condition, eq. 4.3. If the particle moves
with vz < 0 the rates of the two cos-terms are reversed. If there is resonance,
we can compute the change of the particle’s momentum in z-direction,

∆pz = q

∫

dt
(

~v × ~B
)

z
,

=
1

2
qv⊥δB cos(kz0 − Φ) · 2π

kvz
,

where we have inserted the interaction time

τ =
2π

k
· 1

vz
=

λ

vz
≈ L

vz

The interaction time τ is also approximately the wave period

τ ≈ 2π

kvz − ω
=

2π

k(vz − vA)
≈ 2π

kvz
,

because vz ≫ vA. Because of the resonance condition, this is also about the
time it takes the cosmic ray to complete a gyroorbit, Ω−1. Thus,

δpz = πq
v⊥δB

Ω
cos(kz0 − Φ)

≈ π
qv⊥δB

qB
mγ cos(kz0 − Φ)

= πp⊥
δB

B
cos(kz0 − Φ)

= πp sinϑ
δB

B
cos(kz0 − Φ).

Because the electric field vanished in the frame of reference of the wave, the
energy of the cosmic ray is conserved, but its pitch angle is changed in the
wave frame of reference.

Because of pz = p cosϑ we have

δ(p cosϑ) = −p sinϑδϑ = πp sinϑ

(
δB

B

)

cos(kz0 − Φ),
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or

δϑ = −π
(
δB

B

)

cos(kz0 − Φ).

Now cosmic rays do not encounter isolated waves but rather see many of
them. So let’s consider the effect of a train of Alfvén wave packets with random
phases. During a time t there will be t/τ interactions. Because of the random
phases, the cos(kz0 − Φ) will average out to zero. However, the square of δB
will not, because 〈cos2 Φ〉 = 1/2. Thus, in the case of resonance,

〈
(∆ϑ)2

〉
=
∑〈

(δϑ)2
〉
=
t

τ

π2

2

〈(
δB

B

)2
〉

,

or
〈(∆ϑ)2〉

t
=
π

4
Ω

〈(
δB

B

)2
〉

.

This is an important finding, the pitch angle diffuses at a rate which is pro-
portional to the particle’s gyrofrequency and the square of the fluctuations in
the magnetic field.

Thus, cosmic rays interact with Alfvén waves for which

kv ≈ Ω

or, equivalently (with k = 2π/λ) whose wave length is approximately

1

k
=

λ

2π
≈ v

Ω
≈ v

qB
mγ = rg,

the size of the particle’s gyroradius.

If the wave has much shorter wave length, its effect averages out, if it is
much longer, the particle will adiabatically follow the field line and nothing
will change.

Note also, that our assumption that the wave packet is about one wave-
length long is no restriction of the result. Consider what would happen if it
were n wavelengths long. Then the change in 〈(δϑ)2〉 would be larger by n2t/τ .
But τ would also be longer by n and so we would have

〈(∆ϑ)2〉
t

= n
π

4
Ω

〈(
δB

B

)2
〉

.

Now the fluctuations are part of a spectrum

(
δB

B

)2

= ∆k · I(k).
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How well can we know ∆k? Obviously, the more wave periods we observe, the
better we know ∆k. In other words,

∆k =
k

n
=

1

nrg

for a wave train of n wave lengths, the resonance narrows! Thus,

〈(∆ϑ)2〉
t

=
nπ

4

〈(
δB

B

)2
〉

,

=
nπ

4
∆kI(k),

=
π

4
ΩkI(k). (13.96)

The pitch angle diffusion coefficient is proportional to Ω and the wave intensity
at the resonant wave number.

13.8 The 90-degree pitch-angle scattering prob-

lem

Consider again the resonance condition

kvz − ω = Ω,

kv cosϑ− ω = Ω. (13.97)

For most cosmic rays the first term on the left is much larger than the second,
i.e., kvz ≪ ω, and thus

kv cosϑ ≈ Ω (13.98)

is the appropriate resonance condition. Taking the inverse of eq. 13.98 we have

λ

2π
=
v

Ω
cosϑ = rg cosϑ. (13.99)

As the particle’s pitch angle, ϑ, approaches 90 degrees, the resonant wave
length approaches zero. Because of the turbulence spectrum of the wave power
spectral density there are only few waves with such very short wave lengths
available to scatter the particle’s pitch angle through 90 degrees. This is called
the 90-degree pitch-angle scattering problem. It is solved by reflection at
magnetic mirrors. One might also say that for cosϑ ∼ 0 the neglect of ω is
not warranted.



Appendix A

Some Useful Concepts

A.1 Python Scripts used for this Course

A.2 Useful Relations

A.3

A.4 Vector Operators in Various Coordinate

Systems

A.4.1 Cartesian Coordinates: (x, y, z)

~∇Ψ =
∂Ψ

∂x
x̂+

∂Ψ

∂y
ŷ +

∂Ψ

∂z
ẑ (A.1)

~∇ · ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
(A.2)

~∇× ~A =

(
∂Az

∂y
− ∂Ay

∂z

)

x̂+

(
∂Ax

∂z
− ∂Az

∂x

)

ŷ +

+

(
∂Ay

∂x
− ∂Ax

∂y

)

ẑ (A.3)

~∇2Ψ = ∆Ψ =
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
(A.4)
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A.4.2 Cylindrical Coordinates: (ρ, θ, z)

~∇Ψ =
∂Ψ

∂ρ
ρ̂+

1

ρ

∂Ψ

∂θ
θ̂ +

∂Ψ

∂z
ẑ (A.5)

~∇ · ~A =
1

ρ

∂ (ρAρ)

∂ρ
+

1

ρ

∂Aθ

∂θ
+
∂Az

∂z
(A.6)

~∇× ~A =

(
1

ρ

∂Az

∂θ
− ∂Aθ

∂z

)

ρ̂+

(
∂Aρ

∂z
− ∂Az

∂ρ

)

θ̂ +

+
1

ρ

(
∂

∂ρ
(ρAθ)−

∂Aρ

∂θ

)

ẑ (A.7)

~∇2Ψ = ∆Ψ =
1

ρ

∂

∂ρ

(

ρ
∂Ψ

∂ρ

)

+
1

ρ2
∂2Ψ

∂θ2
+
∂2Ψ

∂z2
(A.8)

A.4.3 Spherical Coordinates: (r, θ, φ)

~∇Ψ =
∂Ψ

∂r
r̂ +

1

r

∂Ψ

∂θ
θ̂ +

1

r sin θ

∂Ψ

∂φ
φ̂ (A.9)

~∇ · ~A =
1

r2
∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ
(A.10)

~∇× ~A =
1

r sin θ

(
∂

∂θ
(sin θAφ)−

∂Aθ

∂φ

)

r̂ +

(
1

r sin θ

∂Ar

∂φ
− 1

r

∂

∂r
(rAφ)

)

θ̂ +

+
1

r

(
∂

∂r
(rAθ)−

∂Ar

∂θ

)

φ̂ (A.11)

~∇2Ψ = ∆Ψ =
1

r

∂

∂r

(

r2
∂Ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂Ψ

∂θ

)

+
1

r2 sin θ

∂2Ψ

∂φ2
(A.12)
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An Introduction to Stochastic
Differential Equations

B.1 The Concept of Stochastic Differetial Equa-

tions

B.2 SDEs in Transport Problems

B.3
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