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Chapter 1

Introduction

Physicists are sometimes described as machines that turn coffee into mathematical
formulae. Unfortunately, coffee is not enough, and courses in the normal physics
curriculum normally do not prepare students well enough for some of the challenges
they face when analyzing problems in (extraterrrestrial) physics. For instance, stu-
dents learn rudimentary concepts of statistics in elementary lab courses, especially
in view of the correct treatment of errors. They often do not, however, learn how
to derive confidence limits of model predictions or parameters. In the past 10, 15
years, I have found that there is an urgent need for a course in more advanced
methods in the statistical analysis of data. Similarly, I have found that other im-
portant methods for data analysis are sorely missing in physics curricula, as are
many numerical methods which ought to be taught to modern, computer-literate
students. Such considerations inspired this course, and I hope that it will be useful
to the reader.

Some of the inspiration for these lecture notes also came from the free EBook by
Brink (2010) which gives a consise summary of statistical methods but also adds a
number of helpful examples which other text are too often too skimpy with. I also
profited from the highly readable and practical-minded explanations given in Press
et al. (1989), and have made heavy use of Wikipedia and several online resources
listed below. I gladly acknowledge countless discussions with many students and
Post-Docs, colleagues, and my teachers.

List of online resources:
http://www.itl.nist.gov/div898/handbook/index.htm
https://onlinecourses.science.psu.edu/stat414
https://onlinecourses.science.psu.edu/stat415
http://numerical.recipes/

Needless to say that I used the SAO/NASA Astrophysics Data System (ADS)
extensively for these lecture notes – should you not yet know it, here’s the link:
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https://ui.adsabs.harvard.edu/
The lecture notes you are looking at are a growing experiment and will hopefully

become more complete and useful with time. They begin with a short summary
of some important concepts used in space physics and continues with some useful
numerical methods. The main part of this course focused on the statistical analysis
of data for which the previous two chapters serve to provide the physical models.
It begins with a summary of the most important concepts in probability. Some of
these concepts are applied to the field of random variables and some of the most
important distributions. It is humbling to a physicist that the outcome of his most
carefully designed experiment is called a random variable by a statistician! On the
other hand, it is gratifying to then notice that the aim of the experiment is to
ensure that the distribution function which describes the experimental outcome,
i.e., the measurements, is strongly peaked and minimizes the number and range
of the relevant input parameters. Methods how to generate random numbers are
discussed and some examples are shown in chapter 6, and methods to describe
distributions (descriptive statistics) are given in the following chapter 7.

TODO Motre introductory text on all material covered. Add hypothesis test-
ing and fitting.

Kiel, summer 2022

https://ui.adsabs.harvard.edu/


Chapter 2

The Measurement Process

Figure 2.1 shows properties (such as the half life) of particles (such as the neutron)
vs. their publication date in the Review of Particle Properties (Patrignani et al.,
2016). One immediately sees two striking features: The values change with time
and the error bars decrease with time. A little more thought shows a third striking
feature – the values with the large error bars are often quite different from the ones
with small error bars, loosely spoken, they are inconsistent with later values.

Figure 2.1 also shows an important lesson: Measurement is a tricky business,
it is difficult, it is an art. The people who published the values shown in Fig. 2.1
weren’t stupid, they published the best results they could at their time. But there
is even more to this figure which is not apparent. Take for example the half life of
the neutron (upper left sub-figure). Patrignani et al. (2016) give the mean life of
the free neutron as τ = 880.2± 1.0 seconds. They then write “We average the best
seven measurements. The result, 880.2 ± 1.0 s (including a scale factor of 1.9),
is 5.5 seconds lower than the value we gave in 2010—a drop of 6.9 old and 5.5
new standard deviations.’” We can now also look at the data which they used to
compute the average, it is given in Tab. 2.1. The averaging process is illustrated
in Fig. 2.2.

Looking carefully at Tab. 2.1 you will see that the UCN methods seem to give
lower values than the two other methods. Indeed, the two newest measurements
show τ = 880.2 ± 1.2 and τ = 887.7 ± 1.2 ± 1.9 which appear to be mutually
exclusive! This is indeed a puzzle which is not understood. It also shows how
important it is to measure well and do your best to report accurate measurement
errors or uncertainties. Is there some new physics hidden in this puzzle?

9
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18 Introduction

Figure 2: A historical perspective of values of a few particle properties tabulated in this Review as a function of date of
publication of the Review. A full error bar indicates the quoted error; a thick-lined portion indicates the same but without
the “scale factor.”

Figure 2.1: See caption above. From (Patrignani et al., 2016).
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mean life [s] Source Method
880.2± 1.2 ARZUMANOV 15 UCN double bottle

887.7± 1.2± 1.9 YUE 13 In-beam n, trapped p
882.5± 1.4± 1.5 STEYERL 12 UCN material bottle
880.7± 1.3± 1.2 PICHLMAIER 10 UCN material bottle
878.5± 0.7± 0.3 SEREBROV 05 UCN gravitational trap
889.2± 3.0± 3.8 BYRNE 96 Penning trap

882.6± 2.7 MAMPE 93 UCN material bottle
880.2± 1.0 Error includes scale factor of 1.9.

Table 2.1: Neutron mean life times used for the Patrignani et al. (2016) average
value of 880.2± 1.0 seconds.

Figure 2.2: Determination of the neutron mean life time. From (Patrignani et al.,
2016).
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2.1 Measurement Errors/Uncertainties

Wikipedia gives the following definition of measurement error: “Observational er-
ror (or measurement error) is the difference between a measured value of a quantity
and its true value. In statistics, an error is not a "mistake." Variability is an in-
herent part of the results of measurements and of the measurement process.”

There is an important point to keep in mind about the concept of
measurement and that is that we do not know the “true value”!

We generally distinguish between two kinds of error, statistical and systematic
errors. Let us first consider systematic errors. These can be due to an uncertainty
in the calibration of the measurement equipment. They are reproducible, i.e., they
will always be the same and give a measured value which is always too large or
too small. This kind of error needs to be estimated based on your knowledge of
your equipment.

Example 2.1. If we measure the width and height of a door we use a folding ruler
which has little lines on it with a distance of 1 mm. We assume that this means
that it has a length of 2 ± 0.001 meters. But how long has it been in use and in
what conditions? Did it get wet and expand? Or did it get too dry and contract?
To be conservative we might give a systematic error of ±2 mm.

Note that systematic uncertainties are not the same as a bias! If you know
that your equipment systematically measures less than the “true value”, you need
to correct for this systematic bias. If you know your stop watch runs 1% too
fast, you can easily correct the measured times and reduce them to the “correct”
measured time.

Statistical uncertainties or errors are not reproducible. If you repeat your ex-
periment many times, you will find that the results differ slightly. This can be
due to unknown sources of errors (e.g., you did not take into account temperature
changes) or fundamental limitations of your equipment, e.g., electronic noise in
your detector or Heisenberg’s uncertainty principle. If the latter is your largest
source of errors - Congratulations!

2.2 Accuracy vs. Precision

The accuracy of an experiment is a measure of how close your result is to the “true
value”. The precision of an experiment is a measure of how exactly it measures
with no consideration of possible bias. Figure 2.3 summarizes the meanings of
accuracy and precision. Obviously you should always aim at being as precise and
accurate as possible, only one of the two is not sufficient. The accuracy of the
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experiment is determined by its systematic errors, the precision by its statistical
errors.

The precision of a result is sometimes implied in the reported numbers rather
than reported as an error or uncertainty. On can indicate the precision by the
number of significant digits. This is defined as follows (Bevington and Robinson,
2003):

1. The leftmost non-zero digit is the most significant digit.

2. If there is no decimal point, the right-most non-zero digit is the least signif-
icant digit.

3. If there is a decimal point, the right-most digit is the least significant digit,
even if it is zero.

4. All digits between the least and most significant digits are counted as signif-
icant digits.

Example 2.2. The following numbers all have four significant digits: 1234; 123400;
123.4; 1001; 10.10; 0.0001010; 100.0

When you report a result, the number of significant digits should typically be
one more than allowed by the experimental precision. You should round your
result to the thus defined number of significant digits using the usual rounding
rules.

2.3 Understanding Your Measurement Equipment
In order to provide estimates of the systematic and statistical errors of our exper-
iment, we need to understand the measurement equipment. This can be done in
various ways.

2.3.1 Calibration

Using a known calibration standard, you can repeat the same measurement mul-
tiple times. This gives you information about the calibration of your equipment,
for example how it maps the “true” calibration standard to your measurements,

m : R −→ R.

In an ideal world, the function m (for measurement) will be linear. Its slope
may not be unity and its intercept may also not necessarily be zero, but you can
determine these values from calibration. In addition to these two quantities, you
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can also determine the statistical errors by repeating the measurement with the
same calibration standard multiple times. The more often you measure the same
standard, the better you will know your statistical errors. Of course this can get
rather expensive, so don’t be too greedy.

With enough statistics (and many, many hours spent in calibration facilities)
you will be able to fit a (mathematical) model of your instrument to the calibration
data. Yes, you will not get around having a model of your instrument. You will
always need one to understand your calibration data. The simplest possible model
for your experiment is a straight line,

m(x) = a · x+ b,

which translates the value of the calibration standard into your measurement value.
An example for such a “calibration line” is given in Fig. 2.4. The measurements (y)
are plotted together with their errors against the calibration “standards” (x) and we
have only allowed for measurement errors but none in the calibration “standards”.
The grey-shaded area shows the band in which 95% of all future measurements
should lie. Note that one data point lies outside this band. That is OK as there
are 25 data points and 1 of them is then 4%. The blue shaded area shows the 95%
confidence band for the expectation value for future measurements and the red
line shows the best fit model. You see that the calibration is best in the middle
of the data and is less well defined towards the edges of the data. I will show you
how to determine such a calibration line in chapter 9.

2.3.2 Modelling

The discussion leading up to here has hopefully convinced you that to make good
measurements you need a good understanding of your equipment and a good model
of it too. There are several points which you should consider when modelling your
equipment or instrument.

• KISS! (Keep It Simple, Stupid!) Keep your model as simple as possible but
include all relevant parameters. Yes, this is called the KISS principle.

• Think ahead! As you work on your model, you are likely to discover more
and more effects which you need to account for. Keep your model flexible
enough that it can cope with later additions.

• Document your work! Once you’ve understood your equipment, begin writ-
ing a “calibration report”. Start with the overall structure, add plots and
tables, then descriptions of them, then explanatory text, and you’re already
nearly done!
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Figure 2.3: Visualization of the meaning of accuracy and precision.
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Figure 2.4: Example of a calibration line. Calibration “standards” are along the x
axis, the instrument response is plotted as the y value. No errors in the calibration
“standards” are assumed.
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• Don’t forget to backup your data while you’re working on your project! Of
course here data is meant to include source code and any other files which
you need for your work. It is easiest to do this routinely and therefore this
is a task that can be automated with a cron-job.

• Once you’ve finished your project, archive your data! Ideally you will keep
them in the same directory structure as your report. A suggested structure is
shown in Fig. 2.5. The subdirectory “Report” contains the text of the report
as well as all figures and all scripts which you used to create your figures.
Of course it may make sense to have some substructure in this forlder as
well. An example could be a subfolder for literature which you used and
referenced in your report. The “Model” folder contains your (mathematical)
model of your equipment, all subprograms and data which you generated
using your model. The folder “Calibration Data” contains just that. If you
had multiple calibration sets or campaigns, you will obviously want to add
the corresponding subdirectories. The folder “Auxiliary Data” contains other
things which you don’t know where to put otherwise, such as purchase orders,
invoices, data sheets, manuals, etc. If this gets too large, add substructure.

Calibration
Data

my equipment

ModelReport Auxiliary Data

Figure 2.5: Suggested file structure for your equipment folder.

2.4 Some useful quantities

In extraterrestrial physics we have some quantities which recur in many instru-
ments.

2.4.1 Detection Efficiency

While our particle detectors are normally designed to detect a particle with cer-
tainty or not at all, this is not possible in solar wind instruments such as PLASTIC
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(Galvin et al., 2008)or SWICS (Gloeckler et al., 1992; Gloeckler et al., 1998). A
schematic of such an instrument is shown in Fig. 2.6. Basically, these instru-
ments were designed to measure the kinetic energy, E, (or speed, v), mass, m, and
charge, q, of solar wind ions. To determine these three unknowns, at least three
measurements are needed: E/q, time of flight (ToF), and kinetic energy, E. The
three measurements are discussed below. The trajectory of an ideal ion is shown
in red in Fig. 2.6, secondary electrons in blue, critical parts of the instrument in
black. These complex instruments include complicated ion- and electron optics, a
time-of-flight (ToF) measurement, etc., which all conspire to reduce the detection
efficiency from certainty to a smaller value. Here we generally assume that each
individual process is independent of the others and that we can therefore multi-
ply the efficiencies describing each of them. This means that each process can be
carefully modeled on its own and that the final model for the detection efficiency
can then be computed as a simple product. Figure 2.7 shows some of the relevant
factors that need to be considered when determining the detection efficiency of
a solar wind composition instrument such as SWICS or PLASTIC. Many of the
factors are functions of energy and other properties of the ions that are to be
measured.

MCP

MCP

SSD

foil
carbon

collimator

post acceleration

High Voltage

electrostatic
analyzer

Figure 2.6: Schematic of the principal functional elements of SWICS. An ion
(red) is characterized by three measurements, E/q, ToF, and residual Energy.
The Time of Flight measurement is triggered by secondary electrons emitted by
the thin carbon foil, its stop trigger comes from the secondary electrons from the
SSD which measures residual energy.

Most ions entering SWICS will not make it through the collimator which has
a very narrow angular acceptance of approximately ±2◦. They are subsequently
deflected by an electrostatic field which is applied between the deflection plates.
Only particles within a certain E/q-band make it through this electrostatic ana-
lyzer which thus serves as an E/q-filter. Because most solar wind ions would not
have enough energy to penetrate the carbon foil which is needed to provide the
start trigger for the time-of-flight (ToF) measurement, they are post-accelerated
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by a potential drop across the exit of the electrostatic analyzer and the carbon
foil. This high voltage (between 20 and 30 kV) also requires that all signals from
the following “high-voltage bubble” need to be transmitted across this high volt-
age. The interaction of the ion with the carbon foil is in itself a complex physical
process. For SWICS the critical point is that a few secondary electrons exit the
carbon foil and are accelerated towards the start micro-channel plate (MCP) by a
small potential drop (∼ 1 kV). It does not affect the ions very much because it is
much smaller than the post-acceleration voltage, but also because the ions exit the
foil with a lower charge than they had before their interaction with the foil. They
fly through the “time-of-flight chamber” and hit a solid-state detector (SSD) where
secondary electrons are again emitted. These too are accelerated towards an MCP
to provide the stop trigger for the ToF measurement. If the ion has enough energy
to trigger the SSD, its residual energy is measured. Thus each measurement in
SWICS is actually the consequence of a multitude of physical processes that need
to be described by a mathematical model. A possible structure of such a model is
shown in Fig. 2.7.

Entrance System Carbon Foil Residual EnergyTime of Flight

Collimator (geometry) Scattering in foil

Energy loss

Charge state

Electrostatic analyzer

Ion optics

Geometry of ToF chamber

Scattering in foil, angles

Secondary electrons

Electron optics

Micro-channel plates (MCPs)

Solid-state detector (SSD)

Dead layer, active volume

electronic response

angle of incidenceScattering off surfaces

Figure 2.7: Some relevant factors for calculating the detection efficiency of a solar
wind composition instrument.

Obviously, computing the detection efficiency for solar wind ions is a complex
endeavoring, many PhD theses have been written about that and more information
can be found in them. More complex instruments than SWICS such as PLASTIC
on STEREO or HIS on Solar Orbiter (Owen et al., 2020) don’t only measure the
speed of a solar wind ions, but its velocity vector or angle of incidence, and thus
provide detailed information about the 3D velocity distribution functions of solar
wind ions.

2.4.2 Geometry Factor

In its simplest form or definition, the geometry factor (or geometric factor) is a
purely geometrical quantity and can be computed either analytically or numer-
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ically, depending on the geometry. Sullivan (1971) gives a number of analytic
derivations and expressions for some simple geometries. He defines the geometry
factor in the following words: “For an ideal telescope - whose efficiency for detect-
ing particles of a given type is one in a given energy interval and zero otherwise
and whose sensors are mathematical surfaces with no thickness - the factor of
proportionality relating the counting rate C to the intensity I is defined as the
gathering power Γ of the telescope. When the intensity is isotropic, i.e., I = I0,
the factor of proportionality is called the geometrical factor G.” That is

C = GI0.

I highly recommend that you read this paper1. The concept of geometry factor is
defined in Fig. 2.8. An area A can be subdivided into infinitesimal areas dA with
their normal vectors d ~A. For an isotropic radiation field a single-element detector
with an area A, the geometry factor is easily calculated,

G =

∫
Ω

dω

∫
A

~r · d ~A = 2π

∫ ∫
A

cosϑdA sinϑdϑ = 2πA

∫ 1

0

cosϑd cosϑ = πA,

(2.1)
where we have used that d cosϑ/dϑ = − sinϑ to get rid of the sinϑ and have
implicitly taken the absolute value.

Exercise 2.1. Read the paper by Sullivan (1971) and calculate the geometry
factor for a detector consisting of two collinear circular detectors with radii r1 =
5mm and r2 = 7mm at a distance of l = 12mm.

A useful approximation for a quick estimate of the geometry factor of a detector
consisting of two detectors with areas A1 and A2 at a distance l is

G ≤ A1A2

l2
.

In the following, I provide a purely geometric derivation of the geometry factor
for two collinear circular detectors. Consider an oversimplified model of a detector
stack consisting of two circular detectors A and B with radii ra and rb at a distance
l. The upper panel of Fig. 2.9 shows such an arrangement. The two detectors span
a field of view with a polar angle θ such that

θ = arctan

(
ra + rb
l

)
.

1There is an erratum to this paper; there were some typos which are reported in Sullivan
(1972).
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Figure 2.8: Geometry for the definition of the geometry factor.

Viewing this arrangement from an angle ζ, there will only be a small area in which
both detectors are visible. Thus, as is shown in the lower panel, the determination
of the geometric factor will need to consider the covering of one detector by the
other. This shaded area in the lower panel can easily be calculated as

Ai = r2
a

(
αa −

1

2
sin 2αa

)
+ r2

b

(
αb −

1

2
sin 2αb

)
, (2.2)

where the αs are a function of the zenith angle ζ via d = l tan ζ and we have used
sin 2α = 2 sinα cosα. The αs are easily found by considering the set of constituting
equations for the two circles a and b,

x2 + y2 = r2
a,

(x− d)2 + y2 = r2
b ,

which solves to
x =

r2
a − r2

b + d2

2d
= ra cosαa,

and
x′ = d− r2

a − r2
b + d2

2d
= rb cosαb,

from which αa and αb follow. The effective collecting area at zenith angle ζ, A(ζ),
is given by Ai cos ζ.
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Figure 2.9: Geometry of the collinear circular detectors seen from an off-axis
angle.

The geometric factor is defined by

G =

∫
dA dΩ,

where Ω is the solid angle, dΩ = dθ sin θdφ in spherical coordinates. In this simple
configuration, we have already determined dA = Ai, as this is the area which views
the solid angle dΩ around viewing angle ζ. Thus,∫

dA = Ai(ζ),

and, for an isotropic distribution of incident particles we have

G = 2π

∫ θ

0

Ai(ζ) dζ sin ζ cos ζ
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for a cylindrically symmetric configuration. I did not show the ϕ integration
because it can easily be performed, yielding the 2π infront of the integral.

Finite detector thickness: Careful inspection of the formulae given above will
reveal that they are only true for infinitely thin detectors. Now particles loose
energy in a detector, and they loose more if the detector is thicker. Obviously,
the assumption of a zero-thickness detector is nonsense. Particles will loose a
well-determined amount of energy in them, namely none. This in turn tells us
that we need to consider detectors with finite thickness in our calculations. Let us
do so for the simplest possible configuration of two detectors A and B with radii
and thicknesses ra, rb and da, db at a distance l which is measured from the lower
edge of the lower detector to the lower edge of the upper detector. Obviously, the
geometry factor depends on the surfaces you use to calculate it.

Exercise 2.2. Calculate the effect of the finite thickness of detectors in the ge-
ometry factor.

Exercise 2.3. Particle detectors may use stacks of multiple detectors which are
assembled in such a stack. The particle energy can be determined by measuring
its total energy as the sum of all detected energies, provided that it stopped in one
of the detectors in the detector stack. You can now design a toy model for such a
detector stack with two detectors (and an imaginary “veto” detector to ensure that
particles stop in the second detector) and determine the response function of this
simple detector stack. For simplicity’s sake, assume that the energy deposited in
the detectors is proportional to its path length through the detector(s). Then the
response function is given by the distribution of path lenghts through the detector.
You need to consider some special cases for the geometry of this setup.



Chapter 3

Modeling as a Tool for Physical
Insight

As Galilei Galileo wrote in his book “Il Saggiatore” in 1623, “The book of nature is
written in the language of mathematics”. While this is not an exact quote of what
he wrote, it is certainly the gist of it. To spin this idea further, we may say that
to understand nature, we need to develop a model and describe it in the language
of mathematics. This gives us the possibility to make predictions which can be
falsified, the fundamental power of the scientific method.

This chapter will not describe various models of nature as such would be im-
possible in any book, but is intended to point the reader to the various sources of
numerical methods for some tasks which occur again and again in the mathemat-
ical description of (physical) phenomena.

While this course is more focused on statistical inference, this chapter is needed
to provide the reader with tools to describe mathematical models. Only a math-
ematical model of a system with some free parameters allows us to find these
parameters in some optimal way which is treated later on in the bulk of this book.

3.1 Solving a System of Linear Equations

Consider a system of linear equations,
a11 . . . ai1 . . . an1
...

...
...

a1j . . . aij . . . anj
...

...
...

a1n . . . an1 . . . ann




x1
...
xj
...
xn


=


b1
...
bj
...
bn


, (3.1)

23



24 CHAPTER 3. MODELING AS A TOOL FOR PHYSICAL INSIGHT

where the vector ~b = (b1, . . . , bn) represents measurements, the matrix A is com-
posed of the model matrix elements, aij, and the unknowns, xi, are some unknown
parameters or quantities in the model. If we have exact measurements and an
exact knowledge of the model, then we can invert this system for the unknowns,
~x. There are many methods to do this, Press et al. (1989) give an excellent sum-
mary of many of them. For most users, it will generally be good enough to use a
“pre-canned” routine, for instance, scipy ’s “solve” routine.

Example 3.1. Consider the following system of linear equations,

3x+ y + 5z = 1

x+ 8z = 2

2x+ y + 4z = 3

It is formally equivalent to the matrix equation 3 1 5
1 0 8
2 1 4

 x
y
z

 = A · ~x = (1, 2, 3).

In principle, all you need to do to solve this equation is to determine the inverse
of the matrix A, A−1, and multiply from the left. You would then obtain the
equation

A−1A~x = A−1~b, i.e. ~x = A−1~b.

This may work if A is invertible, i.e., if the determinant of A, detA 6= 0, or,
equivalently, the rank of A equals the number of columns and rows, n, in other
words, if the rows in A are all linearly independent.

An easy way to obtain the inverse of a matrix is provided by scipy ’s inv
routine:

from numpy import ∗
from sc ipy . l i n a l g import inv
a = array ( [ [ 3 , 1 , 5 ] , [ 1 , 0 , 8 ] , [ 2 , 1 , 4 ] ] )
b = array ( [ 1 . , 2 . , 3 . ] )
inva = inv ( a )
p r i n t ( inva )
one = dot ( inva , a )
p r i n t ( one ) #ju s t to check . . .
p r i n t ( ’ x␣=␣ ’ , dot ( inva , b ) )

It is generally better to use the following code:



3.2. NUMERICAL INTEGRATION 25

from numpy import ∗
from sc ipy . l i n a l g import s o l v e
a = array ( [ [ 3 , 1 , 5 ] , [ 1 , 0 , 8 ] , [ 2 , 1 , 4 ] ] )
b = array ( [ 1 . , 2 . , 3 . ] )
x=so l v e ( a , b )
p r i n t ( ’ x␣=␣ ’ , x )

Note, however, that uncertainties in the matrix elements, aij, usually don’t
allow a straightforward inversion process to solve the system. It is nearly always
preferable to solve such problems in an iterative manner (forward modeling).

Since we’re already in the midst of linear algebra, let me point out that scipy
and numpy provide a plethora of linear algebra tools and routines. For instance,
the determinant of a matrix is easily computed:

from numpy import ∗
from sc ipy . l i n a l g import det
a = array ( [ [ 3 , 1 , 5 ] , [ 1 , 0 , 8 ] , [ 2 , 1 , 4 ] ] )
p r i n t ( ’ det (A) ␣=␣ ’ , det ( a ) )

Note that scipy .linalg contains all of numpy .linalg’s functions plus some other
additional ones. Useful guides are provided under the following address:
https://docs.scipy.org/doc/scipy/

Another example is the determination of the eigenvalues, λ, and eigenvectors,
~v, of a matrix, A. They are defined by

(A− λI)~v = 0,

where I is the unity matrix. They are easily found using the following code snippet:

from numpy import ∗
from sc ipy . l i n a l g import e i g
a = array ( [ [ 3 , 1 , 5 ] , [ 1 , 0 , 8 ] , [ 2 , 1 , 4 ] ] )
eigen_val , eigen_vec = e i g ( a )

If the matrix has three linearly independent eigenvectors, this code snippet will
result in three eigenvectors and three eigenvalues.

3.2 Numerical Integration

TODO

https://docs.scipy.org/doc/scipy/
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3.2.1 The Trapezoid Rule

3.2.2 Simpson’s Rule

3.2.3 Runge-Kutta

3.3 Solving an Ordinary Differential Equation (ODE)
Dynamical systems are described by differential equations and so it is important to
be able to solve such equations. Lets see how to do this with the simple example
of a charged particle in a constant magnetic field, ~B. In other words, we need
to integrate the equation of motion of a particle with mass m and charge q in a
constant magnetic field, ~B. The force is given by the Lorentz force, and so we have

~F = m ~a = q (~v × ~B) or ~a =
q

m
(~v × ~B). (3.2)

We will use scipy ’s odeint routine which integrates a system of Ordinary
Differential Equations (that’s what the “ODE” stands for). We check how to use it:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
odeint.html. As expected, we need to provide the function which is to be inte-
grated (eq. 3.2), as well as the initial conditions and an array with the “times” for
which the solutions are needed. Finally, we normally also need to provide some
arguments to the function, for instance the charge and the mass of the particles,
q and m. The solution to eq. 3.2 is obtained by calling

s o l = ode int ( func , y , t , a rgs )

where func is the function to be integrated, y are the initial conditions, t is
the array of times for which we want to know the positions of the particle, and
args contains the arguments to the function. Of course “time” does not necessarily
need to be time, it stands for the independent variable. The solution is obtained
by turning the second-order ODE into two first-order ODEs by defining a new
dependent variable, in this case velocity:

~v
.
= z′, with ~v(0) = ~v0, ~z(0) = ~z0,

~v′ =
q

m
(~v × ~B). (3.3)

Here I have used a prime to indicate the derivative, i.e., v = z′ means that v
is the derivative of z with respect to the independent or controlling variable. The
vector ~y = (~v,~v′) is passed to odeint as the variable y and the function func needs
to understand that notation:

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
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de f func (y , dt , q , m) :
x , v = np . h s p l i t (y , 2)
xp = v
vp = np . mult ip ly ( q/m, np . c r o s s (v , B_fie ld ) )
z = np . hstack ( [ xp , vp ] )
r e turn z

The line x,v = np.hsplit(y,2) calls the command split from numpy and
splits the “vector of vectors” y into two vectors, ~x, and ~v which contain the position
and velocity of the particle.

We now provide the values for ~B, q, and m:

B_fie ld = [ 0 . , 0 . , 1 . ]
q = −1.
m = 1 .

and the main part of the script:

de f main ( ) :
v e l = [ 0 . , 1 . , 0 . 1 ]
x = [ 1 . , 0 . , 0 . ]
t = np . l i n s p a c e (0 ,100 ,2000)
y = np . hstack ( [ x , v e l ] )
z = ode int ( func , y , t , a rgs=(q , m) )
x = z [ : , 0 : 3 ]
v = z [ : , 3 : 6 ]
ax = p l t . f i g u r e ( ) . add_subplot ( p r o j e c t i o n=’ 3d ’ )
ax . p l o t ( x [ : , 0 ] , x [ : , 1 ] , x [ : , 2 ] )
p l t . show ( )

main ( )

We need to preceed our code with some declarations which load the packages
which are called:

import numpy as np
from sc ipy . i n t e g r a t e import ode int
import matp lo t l i b . pyplot as p l t
from mpl_toolk i ts . mplot3d import Axes3D

We end this section with an example which illustrates the treatment of a simple
harmonic oscillator,

mẍ+ gẋ+ kx = A sin(ωt). (3.4)
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from math import p i
from sc ipy . i n t e g r a t e import ode int
from numpy import ∗

#Def ine parameters
m = 1.0 #mass
k = 1 .0 #spr ing constant
g = 0 .1 #damping constant
A = 1.0 #amplitude o f d r i v i ng f o r c e
w = 10 .∗ pi #pi i s imported from math

#Def ine i n i t i a l c ond i t i on s
x0 = 0 .0 #i n i t i a l p o s i t i o n
xp0 = 1 .0 #i n i t i a l speed

#Def ine computat ional parameters
nt = 101 #number o f t imes teps f o r output
t_stop = 30 . #time to stop

#Def ine f i l enames
out f i l ename = " osc i l_v1 . dat"

As before, we solve this using the well-known trick to reduce a second-order
ODE to a system of two first-order ODEs:

de f func (y , t ) :
x , v = h s p l i t (y , 2 )
xp = v
vp = A/m∗ s i n (w∗ t ) − g/m∗v − k/m∗x
z = hstack ( [ xp , vp ] )
r e turn z

We set up the initial conditions and write the solution to a file.

x = x0 #i n i t i a l p o s i t i o n
v = xp0 #i n i t i a l speed
y = hstack ( [ x , v ] ) #i n i t i a l c ond i t i on s
t = l i n s p a c e ( 0 . , t_stop , nt ) #times at which to eva luate
z = ode int ( func , y , t )
x_arr , v_arr = h s p l i t ( z , 2 )

#open output f i l e
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with open ( out f i l ename , ’w ’ ) as f :
i = 0
whi le i < nt :

f . wr i t e ( ’%g␣\ t ␣%g␣\n ’ % ( t [ i ] , x_arr [ i ] ) )
i = i + 1

We can easily visualize the solution:

import matp lo t l i b . pyplot as p l t
import numpy as np

x , y = np . l oadtx t ( ’ osc i l_v1 . dat ’ , u s e c o l s =(0 ,1) , unpack=True )
f i g , ax = p l t . subp lo t s ( )
ax . p l o t (x , y )
ax . s e t_x labe l ( ’ time␣ [ a . u . ] ’ )
ax . s e t_y labe l ( ’ amplitude ␣ [ a . u . ] ’ )
p l t . show ( )

Of course you are encouraged to play around with these examples by changing
their initial and other defining conditions.

3.4 Solving Coupled Differential Equations: Cou-
pled Oscillators

Often one needs to solve systems of coupled differential equations, as for instance
a set of three coupled oscillators. They should be allowed to have different masses,
m1, m2, and m3 and different friction coefficients, b1, b2, and b3, but we only allow
one coupling constand, D.

from sc ipy . i n t e g r a t e import ode int
from numpy import loadtxt , savetxt , h s p l i t
import numpy as np
import matp lo t l i b . pyplot as p l t

#De f i n i t i o n s o f cons tant s o f the problem
#Masses :
m1 = 1 . ; m2 = 1 . ; m3 = 1 .
#f r i c t i o n c o e f f i c i e n t s
b1 = 0 . 2 5 ; b2 = 0 . 2 5 ; b3 = 0.25
#coup l ing constant between o s c i l a t o r s
D = 1 .
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#Now pack a l l cons tant s i n to a " vec to r "
p = [m1, m2, m3, b1 , b2 , b3 , D]

We define the functions that is to are integrated. Because we have three coupled
oscillators, we now have six equations instead of the two in the preceeding example
of the harmonic oscillator.

de f eqs (x , t , p ) :
"""
Def ine the func t i on that needs to be i n t e g r a t ed .
x : Vector o f x_i which de s c r i b e the cur rent s t a t e
t : time
p : parameters (m_i , b_i , D)
"""

x1 , y1 , x2 , y2 , x3 , y3 = x
m1, m2, m3, b1 , b2 , b3 , D = p

#Now de s c r i b e the d e r i v a t i v e s
f = [ y1 ,

(−b1∗y1 − 2∗D∗x1 + D∗x2 )/m1,
y2 ,
(−b2∗y2 + D∗x1 − 2∗D∗x2 + D∗x3 )/m3,
y3 ,
(−b3∗y3 + D∗x2 − 2∗D∗x3 )/m1]

re turn f

We also need to define the initial conditions and parameters for the integration
routine.

#De f i n i t i o n o f the i n i t i a l c ond i t i on s
x1 = 0 . #Al l pendulums are at r e s t
y1 = 0 .1 #Only pendulum 1 has an i n i t i a l v e l o c i t y
x2 = 0 .
y2 = 0 .
x3 = 0 .
y3 = 0 .

#Pack i n i t i a l c ond i t i on s inzo " vec to r " z0 ( s t a t e 0)
z0 = [ x1 , y1 , x2 , y2 , x3 , y3 ]

# Def ine parameters f o r i n t e g r a t i o n rou t in e
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abse r r = 1 .0 e−8
r e l e r r = 1 .0 e−6
stopt ime = 25 .0
numpoints = 750

# Def ine the time s t ep s f o r which we want s o l u t i o n s
t = np . l i n s p a c e (0 , stoptime , numpoints )

We are now ready to perform the calculation and store the results in a file:

z = ode int ( eqs , z0 , t , a rgs = (p , ) , a t o l = abserr , \
r t o l = r e l e r r )

s1 , sp1 , s2 , sp2 , s3 , sp3 = h s p l i t ( z , 6 )
save txt ( ’ three−o s c i l l a t o r s . dat ’ , \

np . c_ [ t , s1 [ : , 0 ] , sp1 [ : , 0 ] , s2 [ : , 0 ] , \
sp2 [ : , 0 ] , s3 [ : , 0 ] , sp3 [ : , 0 ] ] )

3.5 Solving Partial Differential Equations

3.5.1 PDEs of the hyperbolic, parabolic, and elliptic kinds

3.5.2 The Diffusion Equation, a Parabolic PDE

An Explicit Scheme

diff_1.py

An Implicit Scheme

diff_impl.py

3.5.3 Hyperbolic Equations

3.5.4 The Wave Equation, a Hyperbolic PDE

1dwave_simple.py
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3.5.5 Elliptic Equations

3.5.6 Poisson’s Equation, an Elliptic PDE

3.6 Solving Partial Differential Equations in 2 Di-
mensions

2dwave_simple.py
half-circle-membrane.py

3.7 Introducing Boundary Conditions
While the partial differential equations which describe a problem may be seen to
“rule the world”, you should not be too gullible about that. Remember, it is the
same PDEs of aerodynamics which govern the behavior of a 17-th century wind-
mill and how an A-380 flies from Frankfurt to Beijing. The difference lies in the
boundary conditions. So never underestimate your boundary conditions!

3.8 Fast Fourier Transforms

3.9 Wavelet Transforms

3.10 Interpolation



Chapter 4

A Reminder of Concepts in
Probability

What is a probability? We might say that it is the likelihood of something hap-
pening. But what does that mean? Mathematically, we say that probability is
a pair (P,Ω) of a set Ω and a probability function, P , which somehow maps the
possible subsets of Ω, dΩ, to a real numper, 0 ≤ P (dΩ) ≤ 1. Because something
can not be more probable than 100% certainty, we have that P (Ω) = 1.

In this “definition”, Ω is the set of all possible outcomes of an experiment or
measurement. This then, poses the first difficulty in applying probabilities to the
measurement process. What is Ω? Which outcomes of my experiment/measure-
ment are possible? Which outcomes can I exclude with certainty? How should I
deal with uncertainties about possible outcomes?

Nevertheless, there are some mathematical points which we should remind
ourselves of:

• P (Ω) = 1

• P (∅) = 0 (∅ is the empty set. It would contain all impossible events, but
since there must not be any, it is empty.)

• P (A ∪B) = P (A) + P (B)− P (A ∩B) (A or B can happen, or even both)

• P (A ∩B) = P (A) · P (B) (if A and B are independent)

• P (Â) = 1− P (A) (Probability of the complementary event (not A)

Exercise 4.1. Convince yourself that this is indeed the case for a simple example,
such as the well trusted (?!) die, or even more complicated, several dice! Write a

33
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simple script that keeps track of probabilities.
The script needs to define Ω, and P (dΩ) for all possible dΩ. It is up to you to
define the space of all possible events, don’t keep it trivial, but also don’t make it
too involved. After all, you want to check that this works!

In the previous example, I asked you to write a simple script to check the
previously stated points. This of course entails that you use a reliable random
number generator. As you will see in Chapter 6, this is a non-trivial feat. To
generate the random integers like a die, you can use the following code snippet:

from numpy import random
N = 3
d ie = random . rand int (1 , 7 ,N)
p r i n t ( d i e )

Exercise 4.2. You throw a red and a green die. What is the probability of
getting a 6? What is the probability of getting a 6 with the red die? What is the
probability of throwing a red 6 if we already know that we threw a green 6?

4.1 Conditional Probabilities

Often, we need to compute the probability that some event may occur given the
knowledge that some other event has also occured. This is an often confusing
situation . . .

Mathematically, it can be cast into a simple equation for the conditional prob-
ability that event A may happen given that event B has happened:

P (A|B)
.
=
P (A ∩B)

P (B)
⇐⇒ P (A ∩B) = P (A) · P (B|A) = P (B) · P (A|B). (4.1)

You can now immediately see that A and B are independent if P (A ∩ B) =
P (A) · P (B).

Equation 4.1 can be better understood if we interpret it in the following way.
The probability of event B to happen given that various “precursors” Ai may be
needed is given by:

P (B) = P (A1) · P (B|A1) + . . .+ P (An) · P (B|An). (4.2)

Formally this is the probability of event B happening (or having happened) given
the pairwise disjoint events Ai occured and that A1 ∪ . . . ∪ An = Ω. The logics
behind this definition are summarized in Fig. 4.1.
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Figure 4.1: Illustration of the meaning of conditional probability. In essence, the
probability of A is “renormalized” to that of B instead of all probability space Ω.

Example 4.1. The local handball team THW is about to play against the winning
team of the semi-final between Flensburg and, say, Berlin. We want to compute
the probability that THW will win. Obviously, this is not 1:1! We need to con-
sider the history of past games to make an educated guess. We consider the past
performance of the teams playing against each other. We give this information in
the format of (team A wins agains team B):(team B wins agains team A).
Flensburg: Berlin – 3:1;
THW: Flensburg – 2:1;
THW: Berlin – 4:1.
Now using eq. 4.2 we have

P (THW wins) = P (Flensburg wins semi− final) ·
P (THW wins final|Flensburg wins semi− final)

+P (Berlin wins semi− final) ·
P (THW wins final|Berlin wins semi− final)

= 0.75 · 0.67 + 0.25 · 0.8 ≈ 0.7

In other words, the probability of THW winning the final is 70% percent, which
is larger than 50%.

Example 4.2. You again throw a red and a green die. Now consider the following
two outcomes and compute their probabilities:
a) Both dice show the same number.
b) You already know that the sum of the numbers is 8 and now you want to know
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the probability that both dice show the same number.
The probability of a) is P (a) = 1/6 because the first number is irrelevant and
the chance of getting the same number in the second throw is again P = 1/6.
On the other hand, if we already know that the sum of the two numbers is 8,
and we now want to compute the probability that both dice showed the same
number of eyes, then we need to compute P (a|b) = P (a ∩ b)/P (b) to obtain the
conditional probability of the event described in b). The probability that the sum
of the two numbers is 8 is 5/36 because of all 36 possible combinations only 5
give a sum of 8. Thus P (b) = 5/36. The probability that both dice show a 4 is
P (a ∩ b) = 1/6 · 1/6 = 1/36, and so1

P (a ∩ b)
p(b)

=
1
6
· 1

6
5
6
· 1

6

=
1

5
.

Thus the probability of a) increases if we already know that b) is true. This gets
even more dramatic if we know that the sum of numbers is 10 (and even more so
if we know that the sum is 12...). Obviously, if we know that the sum is odd, . . .

4.2 Combinatorics

4.2.1 Permutations

Factorial (n!): If you have a red, green, and blue ball, there are 6 ways of
arranging them,

(r, g, b), (r, b, g), (g, r, b), (g, b, r), (b, r, g), (b, g, r).

n different and distinguishable entities can be arranged in n! different ways.
The number of permutation of n different elements with n1 indistinguishable ele-
ments of the first kind, n2 of the second, . . . , and nk of the k-th kind is

P (n1,n2,...,nk)
n =

n!

n1!n2! . . . nk!
, where

k∑
i=1

ni = n.

4.2.2 Combinations

Binomial Coefficient (
(
n
k

)
): Consider bag which contains an apple (a), an

organge (o), a pear (p), and a piece of bread (b). You can choose two items from
1We may also forumlate this differently: The probability of both dice showing the same

number is P (a) = 1/6 as we already saw in a). The probability that the one of them shows
exactly 4 is also 1/6, and so P (a ∩ b) = 1/36.
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it. Then there are
(

4
2

)
= 6 different combinations you can choose:

(ao), (ap), (ab), (op), (ob), (pb).

Thus, the binomial coefficient gives the number of combinations without repe-
titions. You have a bag with a fixed number of n items in it from which you pick
a number of articles without replacing them.

The number of combinations of k objects chosen out of n objects (n > k)
without replacements is

Ck
n =

(
n

k

)
=
n · (n− 1) · . . . · (n− k + 1)

k!
=

n!

k!(n− k)!
.

The binomial coefficient is informally called “n choose k” or “n over k”. Note that(
n

n− k

)
=

(
n

k

)
.

It is easy to compute the first few binomial coefficients using Pascal’s triangle
where each number is equal to the sum of the two numbers immediately above it:

(
0
0

)
1(

1
0

) (
1
1

)
1 1(

2
0

) (
2
1

) (
2
2

)
1 2 1(

3
0

) (
3
1

) (
3
2

) (
3
3

)
1 3 3 1(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
1 4 6 4 1(

5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
1 5 10 10 5 1(

6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
1 6 15 20 15 6 1

...
...

Multiset Coefficient (
((
n
k

))
): If you go to the baker just before he closes and

have the choice of now only 4 different kinds of bread, but only have enough money
to buy three breads, you have

((
4
3

))
= 20 different choices. This is different from the

“normal” combination discussed above because here you can choose three breads
of the same kind. Or two of the same kind and one other kind.
The multiset coefficient gives the number of combinations with repetitions. You
have a bag with a fixed number of n items in it from which you pick k but putting
your choice back again after each draw.((n

k

))
=

(
n+ k − 1

k

)
.

Combinatorics play an important role in sampling theory, but also when gen-
erating random numbers.
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4.3 Using python for Combinatorics
scipy has a number of combinatorial “function” which can be called. For instance,
“N choose k”,

(
N
k

)
is called as follows:

In : from sc ipy . s p e c i a l import comb
In : comb(4 , 2 )
Out : 6 . 0

or also

In : from sc ipy . s p e c i a l import binom
In : binom (4 , 2 )
Out : 6 . 0

To call the factorial,

In : from sc ipy . s p e c i a l import f a c t o r i a l
In : f a c t o r i a l ( 4 )
Out : array ( 2 4 . 0 )



Chapter 5

Random Variables and Distribution
Functions

5.1 Discrete and Continuous Random Variables
The meaning of the word “random variable” is not necessarily what we normally
consider a “random” “variable”. In statistics it stands for a rule that assigns a
numerical value to the possible outcomes of an experiment. The experiment is
considered to be a process that will produce a variable output (in the sense of
“not always the same”), i.e., it is a probabilistic process. Thus we might say
that the outcome of the experiment can be described by a random variable. As
much as it may hurt your feelings but the results of your experiment are considered
“random variables”, even if you did your utmost best to design the most outstanding
measurement apparatus.

Example 5.1. Take a very simple experiment, flipping a coin. Its outcome is
“heads” or “tails”. The number of heads counted when the coin is flipped three
times is then a random variable with four possible values, 0, 1, 2, 3.

The previous example is an example of a discrete random variable. Discrete
random variables can take on only a countable number of distinct values. If the
random variable X can take on n values, then the probabilities for these n values
must satisfy:

0 ≤ pi ≤ 1 ∀i, as well as
∑

i=1,...,n

pi = 1.

A continuous random variable, on the other hand, can take an infinite,
non-countable number of different values.

Example 5.2. You may remember the use of analog thermometers with which
one could measure temperature on a scale. Because of small variations in reading

39
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the scale one could read different temperatures even when the thermometer was in
a heat bath held at constant temperature. One could even read it from the same
angle a hundred times and get ever so slightly different reading. You can generalize
this to an outside thermometer which is attached to your kitchen window. You
could constantly read it and note down the daily averages of the temperatures
throughout a year. Note that a digital thermometer while measuring the same
temperature, would provide a discrete random variable because it can’t be more
precise than the ADC1 circuit it uses.

You may now argue that even an analog thermometer does not truly provide a
continuous random variable because the number of mercury atoms in it is limited.
While this is, in principal and from a puristic point of view, certainly true, for all
practical purposes, the thermometer is a good example. Phew.

For a probability space (Ω, P ) a random variable is a mapping X from Ω
into the set of real numbers, R. Or, more colloquially, a random variable is
a function or rule that gives different values with different probabilities.

5.2 Distribution Functions

In this chapter we will discuss a number of common (statistical) distribution func-
tions, how they arise and how they are used. Now there are various definitions of
distribution functions and we will consider a distribution function in the sense of
probability density function, similar to the familiar normalized velocity distribu-
ton function. Sometimes distribution functions are also interpreted as cumulative
distributons functions which we will not do here.

Definition 5.1. We define a probability density function p(x) by the following
properties:

p(x)dx = probability of observing variable x within [x, x+ dx].∫ ∞
∞

p(x)dx = 1 (5.1)

The distribution function or probability distribution or probability
density function of a random variable X is a function p : R→ R which assigns
each possible outcome of the experiment a probability. This is easy to understand
for the example of discrete random variables, there p(xi) = pi. In the case of a

1Analog to Digital Conversion (ADC)
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continuous random variable, we define it as the probability that X has a value in
[x, x+ dx]. Thus, the probability P for X to lie within the interval [a, b] is

P (a ≤ X ≤ b) =

∫ b

a

p(x)dx.

Often, one also needs the cumulative distribution function (CDF) FX(x)
which is nothing else than the monotonically increasing sum (or integral) of the
distribution function. It is a function that gives the probability that the random
variable X has a value less than or equal to x. For discrete random variables, the
CDF is given by the sum of probabilities up to pi corresponding to xi.

FX(x)
.
=

∫ x

−∞
p(x)dx, or FX(xj)

.
=
∑

i=1,...,j

pj.

Note that there are different definitions of distribution functions “out there”.
Some people call the cumulative distribution function the distribution function,
others follow our approach. I’ve chosen this because it is close to our usual defini-
tion of distribution functions.

5.3 Support
In a sense, the integration limits of eq. 5.1 are an unnecessary overkill. Many
probability density functions are limited to a finite domain. Have you ever seen
a particle which travels faster than light? Thus, before we discuss individual
distribution functions, we define the support of a real-valued function as the subset
of the domain which contains all those elements of the independent variable which
are not mapped to zero.

supp(f) = {x ∈ X|f(x) 6= 0} . (5.2)

5.4 Expectation Value and Variance
Definition 5.2. The expectation value or expected value of a discrete random
variable is given by the weighted average

E [X] = µ =
N∑
k=1

P (X = k) · k, where N can be ∞.

For a continuous random variable, the expectation value is given by

E [X] = µ =

∫ ∞
−∞

p(x) · x dx,
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where the integration limits only need to cover the support of p, supp(p). One
often finds the Greek letter µ denoting the expectation value.

Definition 5.3. The variance of a random variable with expectation value E [X] =
µ is given by

Var [X] = E
[
(X − µ)2

]
.

For discrete and continuous random variables, X, the variance is given by

Var [X] =
N∑
i=1

P (X = k) · (k − µ)2, Var [X] =

∫ ∞
−∞

p(x) · (x− µ)2 dx.

The variance is a measure of how wide the distribution is, i.e., how much spread
there is or how much variability is inherent in the distribution. We will consider
some examples in a moment.

Definition 5.4. Where there is a variance, there is also a standard deviation, σ,
of the random variable, and it is the square root of the variance:

σ(X) =
√

Var [X].

Example 5.3. Consider our good friend, the die. What is the expectation value
for all the throws if it is a fair die, i.e., P (X = k) = 1/6 ∀k?

E [X] =
6∑
i=1

1 + 2 + 3 + 4 + 5 + 6

6
= 3.5.

The variance is computed to be

Var [X] =
6∑
i=1

1

6
(k − 3.5)2 = 2.92,

and the standard deviation is then σ =
√

Var [X] =
√

2.92 = 1.71.

Example 5.4. Consider the uniform deviate on the support [0, 1], f(x) = 1 on
[0, 1]. The expectation value is

E [X] =

∫ 1

0

xdx = 0.5 = µ

and the variance and standard deviation are

Var [X] =

∫ 1

0

(x−µ)2dx =

∫ 1/2

−1/2

z2dz =

[
z3

3

]1/2

−1/2

= 0.083, σ =
√

0.083 = 0.289.
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5.4.1 Some Formulae for the Expectation value and Vari-
ance

Consider two random variables, X and Y . Then the following holds true even if
they are dependent:

E [X + Y ] = E [X] + E [Y ] , Additive
E [aX] = aE [X] , Multiplicative

Var [X] = E
[
X2
]
− E [X]2 ,

Var [aX] = a2 · Var [X] ∀a ∈ R,
Var [X + a] = Var [X] ∀a ∈ R.

If X and Y are independent, then the following also holds:

E [X · Y ] = E [X] · E [Y ] , Var [X + Y ] = Var [X] + Var [Y ] .

5.5 Covariance and Correlation
Covariance is a property which can only be held by a pair of random variables
(or more). It is a measure of how much the two random variables X and Y vary
together or of their joint variance, in other words, their co-variance. If Y tends to
be large if X is large and tends to be small if X is small, then their covariance will
be positive. If X tends to be small when X is large and large when X is small,
then the covariance will be negative. It is best to illustrate this with an example.

Example 5.5. Consider two dice, die 1 and die 2 which you throw 10 times.
Suppose you get the following results:

D1 : [1, 6, 3, 4, 6, 4, 6, 5, 6, 5]

D2 : [5, 5, 5, 5, 6, 1, 3, 2, 6, 6]

While there may be some covariance in this example, you don’t expect one if you
throw the dice often enough. After all, the two random variables D1 and D2 are
independent. But now what happens if you consider D1 + D2 as the two random
variables? Then you do expect a positive covariance! This is illustrated in Fig. 5.1.

The covariance of two random variables X and Y is given by

Cov [X, Y ] = E [(X − E [X])(Y − E [Y ])] ,

= E [XY −XE [Y ]− E [X]Y + E [X]E [Y ]] ,

= E [XY ]− E [X]E [Y ]− E [X]E [Y ] + E [X]E [Y ] ,

= E [XY ]− E [X]E [Y ] ,
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Figure 5.1: Illustration for the covariance of independent (left) and dependent
(right) random variables. Two dice D1 and D2 are thrown 10 times. The left hand
panel shows the results of die D2 plotted vs. those of die D1. The two random
variables are independent and the covariance should vanish. The right-hand panel
shows the sum of the results of the two dice (D1 +D2) plotted vs. the results of die
D1. These two random variables are no longer independent and show covariance.

where we have used the formulae for the expectation value given on page 43. Do not
use the last line to compute the covariance! As you may expect by closely looking
at that line, it is prone to numerical cancellations and may result in non-sensical
results. Use numpy .cov instead.

There are two more things to be said about the covariance itself:

Cov [X,X] = Var [X] , and Var [X + Y ] = Var [X] + Var [Y ] + 2 · Cov [X, Y ] .

If X and Y are independent the last term in the second equation vanishes.
As you may already have guessed, the covariance of two random variables X

and Y is closely connected with the correlation between the two. The correlation
coefficient ρ of X and Y is

ρ =
Cov [X, Y ]

σ(X)σ(Y )
,

where σ(X) =
√

Var [X] is the standard deviation of X. Division of the covariance
between X and Y by their standard deviations (if they are different from zero)
normalizes the covariance to the correlation coefficient which can vary between −1
and 1.

Example 5.6. Let us illustrate this with our two dice again and consider D1 and
D1 +D2 as the random variables. We know that E [D1] = 3.5 and E [D1 +D2] = 7.
Despite the above warning, we compute the covariance as

Cov [X, Y ] = E [X · Y ]− E [X] · E [Y ] = 27.42− 3.5 · 7 = 2.92.
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With the standard deviations σ(X) = 1.71 and σ(Y ) = 2.42 the correlation coef-
ficient is then

ρ =
2.92

1.71 · 2.42
= 0.71

which, as expected, is positive.
To calculate E [X · Y ] you need to consider all possible outcomes of throwing the
dice. The procedure is illustrated with the table below. If you throw a 1 with die
1, you can have a sum D1 +D2 ∈ [2, 3, 4, 5, 6, 7], if you throw a 4, you could have
anything in [5, 6, 7, 8, 9, 10] as the sum, etc. The sum of possible sums for each
possible throw of D1 needs to be multiplied be the value of D1. The sums of the
possible sums are [27, 33, 39, 45, 51, 57] and the product with the results of D1 are
[27, 66, 117, 180, 255, 342]. The sum of weighted sums of sums is then 987. Since
there were 36 possible combinations (with some equal sums), we need to divide
987 by 36 to obtain the expectation value E [X · Y ] = 27.42.

die 1 1 2 3 4 5 6

D1 +D2

2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12

sum 27 33 39 45 51 57

5.6 The Binomial Distribution (Again)
Consider an unfair or lopsided coin which has probability p for heads and prob-
ability q = 1 − p for tails, where p 6= q. Now throw it n times. The probability
for having thrown x heads is px and qn−x for n − x tails. The probability of the
combination of x coins heads up and n − x coins tails up is then pxqn−x. In all
generality, the probability for observing x of the n flips to be in the state descriped
by p is given by the binomial distribution

PB(x, n, p) =

(
n

x

)
pxqn−x =

n!

x!(n− x)!
px(1− p)n−x.

The name of the binomial distribution indeed comes from the binomial theorem:

(p+ q)n =
n∑
x=0

[(
n

x

)
pxqn−x

]
.

The expectation value of a random variable X which is distributed according
to the binomial distribution (e.g., “heads”), is given by E [X] = np. If you flip the
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(lopsided) coin n times, the expected number of heads will be np. The variance is
given by Var [X] = np(1 − p). To understand the value of the variance, consider
the following. The expectation value for a single flip is p. Repeating the flip n
times gives the expectation value for the number of heads as np, in other words,

E [X] = E [X1] + E [X2] + . . .+ E [Xn] = p+ p+ . . .+ p = np,

where the Xi mean a single flip of the coin. Similarly, the variance of a single flip
of the coin is Var [Xi] = pq, and so

Var [X] = Var [X1] + Var [X2] + . . .+ Var [Xn] = pq + pq + . . .+ pq = npq.

You may say that this begs the question: Why is Var [Xi] = pq? Remember that

Var [X] = E
[
(X − E [X])2

]
= E

[
(X2 − 2XE [X] + E [X]2)

]
= E

[
X2
]
− E [X]2 .

Now
E
[
X2

1

]
=
∑
x

x2Prob(X1 = x) = 02 · (1− p) + 12 · p = p.

So
Var [X1] = E

[
X2

1

]
− E [X1]2 = p− p2 = p(1− p) = pq.

Binomial Distribution Summary:

PB(x, n, p) =

(
n

x

)
pxqn−x =

n!

x!(n− x)!
px(1− p)n−x.

E [X] = np, and Var [X] = np(1− p).

5.7 The Law of Large Numbers and the Central
Limit Theorem

The law of large numbers states that if you repeat an experiment a large number
of times, the average result will approach the expectation value. It was first proven
by Jacob Bernoulli, Poisson later named it the law of large numbers. Figure 5.2
illustrates this important law.

lim
n→∞

1

n

n∑
i

xi = E [X] .
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Figure 5.2: Illustration of Bernoulli’s law or the law of large numbers. If we com-
pute the average result of throwing a die, the average approaches the expectation
value as the number of throws increases.

So the law of large numbers tells us that many repetitions of the experiment
will lead to an average that tends towards the expectation value. The central
limit theorem tells us that the results of the experiment will be distributed like
a normal distribution, even if the outcomes of the individual experiments were not
normally distributed.

Consider again our faithful die. We throw it 6 times and compute the average
of the eyes. For instance, if we throw the sequence [1, 1, 5, 3, 5, 2] we obtain an
average of (1+1+5+3+5+2)/6 = 17/6 = 2.833. We now repeat this experiment
50, 200, and 2000 times, histogram the resulting averages and plot them vs. the
possible averages. This is shown in Fig. 5.3.

5.8 The Normal Distribution

The central limit theorem explains why the normal distribution is so important.
It is a continuous distribution, and a normally distributed random variable X can
take any value in R. One then often writes that the random variable X is normally
distributed as X ∼ N(µ, σ2).
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Figure 5.3: Illustration of the central limit theorem. A die is thrown 6 times and
the average number of eyes recorded. That experiment is repeated 50, 200, and
2000 times (top to bottom). The average is a normally distributed random variable
as is shown in the central panel. Note however, that because of the small number
of throws entering the average, not all real (or even rational) values between 1
and 6 are covered. The bins need to account for that, as is shown in the left- and
right-hand panels. See also section 7.9. (If you inspect this figure carefully, you
will see that the “number” appears to exceed the number of tosses. This is due to
the fact that one needs to plot the number of results falling within a certain bin
and normalize it by the width of the bin.)



5.9. THE POISSON DISTRIBUTION 49

Normal Distribution Summary:

Pn(x, µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
.

E [X] = µ, and Var [X] = σ2.

The cumulative distribution function of the normal distribution is

F (x, µ, σ2) =

∫ x

−∞

1√
2πσ2

exp

(
−(t− µ)2

2σ2

)
dt

and is closely related to the error function Φ(x) which for non-negative values of x
gives the probability ofX falling within [−x, x]. Φ(x) equals F (x, µ = 0, σ2 = 1/2).

Rule of Thumb for the Normal Distribution: If a random variable
X is normally distributed, about 68% of all values should lie within ±σ,
approximately 95% of all data points should lie within ±2σ, and 99.7%
should lie within ±3σ.

A variant of the normal distribution is the standard normal distribution which
is the normal distribution for µ = 0 and σ2 = 1. This distribution and its cumu-
lative distribution function are often tabulated because one needs to look up their
values quite frequently in statistics. You can also use

from sc ipy . s t a t s import norm\\
norm . pdf ( x ) = exp(−x∗∗2/2)/ sq r t (2∗ pi ) #De f i n i t i o n \\
norm . cd f ( x ) = . . . #The cumulat ive d i s t r i b u t i o n func t i on

The binomial distribution function which we considered a moment ago is well
approximated by the normal distribution for np > 5 and nq > 5. Both conditions
need to be satisfied and of course depend on the quality of approximation which
you aim at.

5.9 The Poisson Distribution
The Poisson distribution is already well-known to us because it describes radioac-
tive decay or any stochastic events which occur sporadically with an average wait-
ing time between events. It describes the probability of having a certain number
of events in a given time interval (or spatial interval, or any other interval) if these
events occur at a known constant rate and are independent of the time since the
last event. The best example of a Poisson process is the activity of a long-lived
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radioactive source. Another good example is the number of times a week which I
need to brew coffee for our group. It is on average 4 to 5, but sometimes higher and
sometimes lower. One thus says that the Poisson distribution has an expectation
value, λ. This expectation value is sometimes also called intensity.

Example 5.7. On average I need to brew a fresh pot of coffee for our group 4.5
times a week. What is the probability that I need to brew coffee exactly k = 5
times this week?

P (k = 5, λ = 4.5) = e−λ
λk

k!
= 17.1%.

If the random variables X1, X2, . . . , Xn are independent Poisson random vari-
ables with λi being their expectation values (intensities), then the sum

X = X1 +X2 + . . .+Xn is Poisson distributed with λ =
∑
i=1,n

λi.

Poisson Distribution Summary:

P (k, λ) = e−λ
λk

k!

E [X] = λ, and Var [X] = λ.

Rule of Thumb for the Poisson Distribution: You can approximate
the Poisson distribution by a normal distribution if λ ≥ 9 as is shown in
Fig. 5.4.

P (k, λ) ≈ 1√
2πλ

exp

(
−(k − λ)2

2λ

)
for λ ≥ 9.

Note that the normal and Poisson distributions differ considerably for small
numbers! If your expectation is to see half a count every second, then the nor-
mal distribution would give you a non-vanishing probability for negative counts
per second! The Poisson distribution takes care of this unphysical behaviour by
describing the statistics correctly.

5.10 The Weibull Distribution

The Weibull distribution models processes which have a failure rate which changes
with time. The following two examples may motivate this distribution.
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Figure 5.4: The Poisson distribution for various expectation values (or intensities),
λ are shown in color. Gaussian (normal) approximations are shown as thin dashed
lines.

Example 5.8. Suppose you own a company that builds coffee machines and you
find that you get a number of complaints about defective machines every month.
You track down every complaint and know when the coffee machine was built,
assembled, and sold. You can now sort your complaints by the age of the coffee
machines and check whether their failure rate is well approximated by a Poisson
distribution. A Poisson distribution results from a constant probability of failure.
But of course there are also other possible “failure distributions”. A provider of
some part in your cofee machine may have sold you some “Monday parts” even
though you have a contract with them that does not allow this. This would mean
that these Monday parts would fail much sooner than expected based on an average
failure rate. In other words, the failure rate of your coffee machine would decrease
with time. One calls this phenomenon an “infant mortality” of your coffee machine.
Once these premature defects are “weeded out” your coffee machines show their
average failure rate.

Example 5.9. Now let us assume that your company builds really good coffee
machines and you have all your subcontractors under iron control. But after some
years, the number of complaints begins to increase. Again you track down every
complaint and plot the complaint rate against age of the coffee machine. But this
time you find that the complaint rate increases with the age and use of your coffee
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machines. This could be due to “the weakest joint”, e.g., a moving part which sees
more stress than expected in the “daily grind”. It thus experiences fatigue which
sets in with time. This would explain an increase of the failure rate with time.

Weibull Distribution Summary: The Weibull distribution models such
non-constant failure rates as a failure rate which de- (in-) creases as a power
law with time,

f(x, λ, k) =

{
k
λ

(
x
λ

)k−1
exp

(
−(x

λ
)k
)

x ≥ 0,
0 x < 0.

(5.3)

Here k is called the shape parameter and λ is the scale parameter.

If the random variable X is the mean failure rate with time (as in the examples
above) and the failure rate is proportional to a power of time, then k is this power
plus one. Thus we have the following interpretation:

• If k > 1 then the failure rate increases with time, indicating an “aging”
process which results in an increased failure rate with time.

• If k = 1 then we have the Poisson distribution with its constant failure rate,
i.e., truly random events in time.

• If k < 1 the failure rate decreases with time and we have a problem of “infant
mortality”.

In real life, a combination of “infant mortality” and an increase of failure rate
with time is observed. This results in the so-called “bathtub curve” for the failure
rate which is illustrated in Fig. 5.5.

Early failures due
to defective parts

Increase of
failure rate
due to aging

tfa
ilu

re
ra

te

Figure 5.5: Illustration of the bathtub curve which is a well-known issue in quality
assurance.
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5.11 The Log-Normal Distribution
What happens to the Central Limit Theorem if you don’t consider additive random
variables, but ones which multiply, i.e., X̄ =

∏n
i=1Xi? Remember that the central

limit theorem says that the averages of a large number of experiments give a
normal distribution around the mean. Now assume that your random variables
are all positive so you can take the logarithm of the product and the resulting sum
of logarithms exists because all the factors Xi > 0. Then the central limit theorem
will ensure that the logarithms, log(Xi), are normally distributed.

Example 5.10. Say you have some money invested in stocks and one year you earn
positive interest, in another year you loose a certain percentage. Now assume you
have many such investments. If the percentages are normally distributed, then
your investments will be log-normal distributed because the random variables,
your investments, will change by factors (1 + ε) > 0 every time period, i.e., X̄i =∏n

j=1Xij = Xi0

∏n
j=1(1 + εi). Then

log(
X̄i

X0

) =
n∑
i=1

log(1 + εi) ≈
n∑
i=1

εi.

So the logarithms will be normally distributed.

Log-normal Distribution Summary: The log-normal distribution is the
probability distribution function of a random variable whose logarithm is
normally distributed.

p(x, µ, σ) =
1

x
· 1√

2πσ2
exp

(
−(log x− µ)2

2σ2

)
(5.4)

Here µ is still called the mean and σ is also still the standard deviation.

If Z is a standard normally distributed random variable, then

X = eµ+σZ

is log-normally distributed with mean µ and standard deviation σ. Figure 5.6
illustrates the distribution (from Wikipedia).

Log-normal distributions occur quite often in nature. Many natural processes
can be described by a succession of fractional growth or shrinkage, similar to the
example 5.10 given above. Because they are multiplicative in nature, their results
aren’t described by a normal but by a log-normal distribution.
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Figure 5.6: If Y is normally distributed, then X is log-normally distributed (from
Wikipedia, StijnDeVuyst).

5.12 The Landau Distribution

This distribution describes the energy straggling or stochastic energy loss of par-
ticles during their passage through matter. It was found by Landau (1944) after
whom this distribution is named.

Landau Distribution Summary: The Landau distribution is given by
the following probability distribution function.

p(x) =
1√
2π

exp

(
−1

2

(
x+ e−x

))
. (5.5)

The Landau distribution has such long tails that the mean and variance
cannot be calculated. It is centered around zero.

5.13 The Laplace Distribution

If a number of observers measure the same quantity with the same mean µ but
different normally distributed errors, then the resulting distribution of observations
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Figure 5.7: Illustration of the Landau distribution.

is well described by the Laplace distribution,

p(x) =
1√
2σ

exp

(
−
√

2
|x− µ|
σ

)
. (5.6)

The Laplace probability density function (see Fig. 5.8) is maximized when µ
is the median of the underlying distribution. It is useful when the underlying
distribution is very heterogeneous and maybe is composed of a number of different
distributions with different widths (variances). It can be used to fit regression
models which make use of the median instead of the mean (see chapter 9 on fitting
models to data).
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Figure 5.8: Illustration of the Laplace distribution.



Chapter 6

Generating Random Numbers

Today, generating random numbers appears trivial. numpy provides a collection of
well-tested and highly-performant random number generators (see numpy.random).
Nevertheless, a good understanding of how random number generators work is
useful, a highly readable and recommended source is Press et al. (1989, and later
versions) which we follow here.

6.1 Generating Uniform Random Numbers
The simplest artificial generator for discrete random numbers is probably a coin
which is flipped, the next complicated generator is a die with its six sides. Both
generate uniform random numbers, the first in the space (0, 1), the second in
(0, 1, 2, 3, 4, 5) (or in (1, 2, 3, 4, 5, 6) if you prefer) – if they are unbiased.

Generating random numbers with your computer is an art, and this is the
reason why I leave it up to numpy.random to generate random numbers. There
are many pitfalls in generating your own random number, the easiest way to avoid
them is to use good and well-tested random number generators.

So let’s generate a numerical “coin” which returns 0 or 1 for head or tails.
from numpy import random
co in = {0 : ’ heads ’ , 1 : ’ t a i l s ’ }
co in [ random . rand int ( 2 ) ]

A die is generated exactly the same way, except for the argument of randint().
from numpy import random
random . rand int (1 , 7 )

It is always a good idea to test whether your random number generator pro-
duces random numbers according to your expectations. For the previous example,
this is trivial:

57
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import numpy as np
from numpy import random
import matp lo t l i b . pyplot as p l t

rn = random . randint (1 ,7 ,6000)
b ins = np . array ( [ 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ] )
counts , b ins = np . histogram ( rn , b ins )
f i g , ax = p l t . subp lo t s ( )
ax . s e t_x labe l ( ’ eyes ’ , f o n t s i z e =14)
ax . s e t_y labe l ( ’ counts ’ , f o n t s i z e =14)
x = [ 0 . 7 5 , 6 . 2 5 ] ; yp = [1000+np . sq r t (1000.) ,1000+np . sq r t ( 1 0 0 0 . ) ]
ym = [1000−np . sq r t (1000.) ,1000−np . sq r t ( 1 0 0 0 . ) ]
ax . f i l l_be tween (x , yp ,ym, f a c e c o l o r=’ grey ’ , alpha =0.5)
ax . p l o t ( [ 0 . 7 5 , 6 . 2 5 ] , [ 1 0 0 0 , 1 0 0 0 ] , ’ k− ’ , lw=2, l a b e l=’ expected ’ )
ax . set_xlim ( [ 0 . 5 , 6 . 5 ] )
ax . e r r o rba r ( d e l e t e ( bins ,0)−1 , counts , ye r r=np . s q r t ( 1 .∗ counts ) ,

fmt=’ bo ’ , lw=2, l a b e l=’ counts ’ )
ax . l egend ( l o c=’ cent e r ␣ r i g h t ’ )
p l t . s a v e f i g ( ’ counts . pdf ’ )
p l t . show ( )

The results are shown in Fig. 6.1. As expected when checking against deviations by
one standard deviation, about one third (i.e., two) of the data points lie outside the
error band. So we found nothing obviously wrong with this random generator. Of
course, there are much more sophisticated tests for random number generators. If
you really need to be sure about the randomness of the generator you are using, you
had better run these tests. References to some tests are given in Press et al. (1989)
which you can also find on the web (http://numerical.recipes/). There are also
more modern references, but in principle, they all do the same, they test the null
hypothesis H0 that the random numbers generated are indeed random against the
alternative hypothesis H1 that they aren’t. See Chapter 8 on hypothesis testing.

To generate uniformly distributed random numbers in an interval, use
random.rand(d0, d1, . . . , dn) which generates an array of random numbers in the
shape given by d0, d1, . . . , dn drawn from the half-open interval [0, 1). numpy.random
provides many more convenience functions.

If you want random numbers in a different range, e.g., (a, b), then use
random.random_sample() and multiply it by (b− a) and add a.

from numpy import ∗
5 ∗ np . random . random_sample ( ( 3 , 2 ) ) − 5

array ( [ [ −3 .99149989 , −0.52338984] ,

http://numerical.recipes/
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Figure 6.1: Expected (black) and simulated counts of the 6 possible outcomes of
casting this “virtual die”.

[−2.99091858 , −0.79479508] ,
[−1.23204345 , −1 .75224494 ] ] )

6.2 The Transformation Method for Exponential
and Normal Random Numbers

We don’t always want uniformly sampled random number, but random numbers
from a different distribution, e.g., a normal distribution or an exponential distribu-
tiuon (e.g., to simulate nuclear decay). This is actually not that difficult to do. On
the one hand, numpy.random provides a wide range of random number generators.
I counted more than 25 of them in March 2022.

See https://numpy.org/doc/stable/reference/random/generator.html.
Despite this large number of ready-made generators, I will show you how to

make your own so you can generate random numbers from any distribution you
like. We just saw how to generate random numbers in the range [0, 1). The
probability of drawing a number between x and x+ dx is given by

p(x)dx =

{
dx 0 ≤ x < 1
0 otherwise, (6.1)

https://numpy.org/doc/stable/reference/random/generator.html
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where the probability distribution p(x) is normalized to unity,∫ +∞

−∞
p(x)dx = 1

and the integral actually only needs to extend from 0 to 1. Given a uniform deviate
x, we can perform some function y(x) on it, which results in a new probability
distribution p(y)dy. It is easy to find out what p(y) looks like:

|p(y)dy| = |p(x)dx|

p(y) = p(x)|dx
dy
| = |dx

dy
|, (6.2)

because p(x)dx is uniform across the interval [0, 1). Note that we need to know
x(y) so we can compute dx/dy.

Now eq. 6.2 is nothing else that a differential equation for p(y). Furthermore,
the integral of p(y) has to be unity. The solution of this differential equation is sim-
ply x = P (y) where P (y) is the indefinite integral of p(y). Thus the transformation
from the uniform deviate x into one distributed as p(y) is

y(x) = P−1(x), (6.3)

where P−1(x) is the inverse function of P . So the recipe to generate a random
deviate y distributed as p(y) is the following:

1. Determine the indefinite integral of p(y), P (y).

2. Determine its inverse, P−1(y)

3. y(x) = P−1(x) is now the new deviate.

This procedure is visualized in Fig. 6.2. Because the new distribution is nor-
malized to unity, its definite integral is unity. If we plot the indefinite integral,
P (y), as a function of y, the y axis will extend from 0 to 1, and the x axis from
ymin to ymax. Now the uniform deviate x is plotted along the y axis. If we choose
a value for x (on the y axis!), say, x = 0.7 in Fig. 6.2, then we can transform x to
y(x) by intersecting with P (y) and dropping down to the x axis, along which the
transformed deviate y(x) is plotted.

Following Press et al. (1989), we derive the probability distribution for expo-
nential deviates. We choose y(x) = − ln(x), then p(y) is given by

p(y)dy = p(x)|dx
dy
|dy = e−ydy (6.4)

because p(x)dx is uniform across the interval [0, 1)
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Figure 6.2: Illustration for the transformation method. The uniform deviate is
plotted along the y axis, the transformed random deviate is plotted along the x
axis.

6.3 Generating Random Numbers From a ’Crazy’
Distribution

Sometimes one wishes to generate random numbers from a given distribution which
can not be described by a function. If we have a list of pairs of values, (x, y), de-
scribing this distribution, we can read it from a file and generate random numbers
in exactly the same way as described above. The following code snippet shows an
example how one can provide a series of random numbers which are distributed
according to a provided input (in this case the file ’some_crazy_data.dat’ which
is given in Tab. 6.1).

from sc ipy . i n t e r p o l a t e import inte rp1d
x , y = loadtx t ( ’ some_crazy_data . dat ’ , unpack=True )
c s_d i s t r i b = cumsum(y )
cs = c s_d i s t r i b [−1]
cs_distrib_norm = d iv id e ( c s_d i s t r ib , c s )
ran_di s t r ib = inte rp1d ( cs_distrib_norm , x )

Fig. 6.3 shows an example.
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Figure 6.3: random

Exercise 6.1. Provide a random number generator with the following properties:

p(x) = const. for 0.5 ≤ x ≤ 1.0 and p(x) = exp(−(x− 1)/λ) for x ≥ 1.,

where p(x) = 0 otherwise.

6.4 Generating Random Numbers on a Sphere (or
on a Cirlce)

Sometimes we need to generate random locations on a sphere (hang on, you’ll soon
find out why). For this, we can use a nice property of the Gaussian distribution,

f(x) =
1√
2π

exp(−x
2

2
),

where we have used a normal distribution with standard deviation σ = 1. A
random variable that is thus distributed is said to be distributed according to
N(0, 1). Here the N stands for the normal distribution, the 0 for the mean or
average of the distribution, and the 1 for the standard deviation. This can easily
be generalized to d dimensions,

f(x) =
1

(
√

2π)d
exp(−x · x

2
),
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x y
0. 0.
1.2 0.11
1.33 0.2
2.4 0.23
3.5 0.34
3.8 0.1
4.0 0.
4.6 0.
4.7 0.
4.75 0.
4.8 0.1
4.9 0.1
5.05 0.1
5.25 0.
5.6 0.
6.7 0.
7.8 0.
8.1 0.1
8.5 0.2
9.0 0.45
10. 0.56

Table 6.1: “Data” for some_crazy_data.dat.

where x · x denotes the scalar product in d dimensions.
Now consider a d-dimensional random vector which is distributed according to

N(0, 1). If we rotate it by some arbitrary angle around an arbitrary axis it will
still be a N(0, 1)-distributed random vector. Every rotation can be described by
a rotation matrix, U , which is always orthogonal, i.e., UU t = U tU = I, where I
is the unit or identity matrix and the t indicates the transpose. Now consider a
random vector ~x and its transform under U , ~y = U~x. Then

f(y) =
1

(
√

2π)d
exp(−~y · ~y

2
) =

1

(
√

2π)d
exp(−(U~x) · (U t~x)

2
) =

1

(
√

2π)d
exp(−~x · ~x

2
),

which proves that normally distributed random numbers in d dimensions are in-
variant under rotations. Thus if we generate ~x in d dimensions and project them
onto the sphere, then they are uniformly distributed on the sphere. For d = 3 we
have a sphere, for d = 2 we have a circle.
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import numpy as np

#f i x random number seed so we can reproduce p l o t s .
#Remove i f you want r e a l random numbers !
np . random . seed (20210822)

n = 500 #number o f random numbers

#The f o l l ow i ng l i n e s generate random po in t s
#on a sphere with rad iu s R
R = 2 .
u = np . random . normal (0 , 1 , n )
v = np . random . normal (0 , 1 , n )
w = np . random . normal (0 , 1 , n )
norm = (u∗u + v∗v + w∗w)∗∗ ( 0 . 5 ) /R
(x , y , z ) = (u , v ,w)/norm

You can check that these points lie on a sphere and appear to be randomly
distributed by plotting them using the following code snippet.

from mpl_toolk i ts import mplot3d
f i g = p l t . f i g u r e ( )
ax = f i g . add_subplot ( p r o j e c t i o n=’ 3d ’ )
ax . s c a t t e r (x , y , z )
p l t . show ( )

6.5 Generating Random Numbers inside a Circle
(or inside a Sphere)

In the previous section, we generated random points on the surface of a sphere
(or on a circle) by projecting the normally distributed random points on to the
boundary of the sphere (or circle). To fill a sphere or a circle, we need to adapt the
radial mapping so that the points are randomly distributed inside the object. For
a circle, the probability density function (PDF, see eq. 5.1 for the definition) of
random points increases linearly with radius, for a sphere it increases quadratically
with radius. The cumulative distribution function (CDF) thus grows quadratically
(cubically). Thus we need to take the square root (cubic root) of a uniformly
distributed random number as the radius of the point in the circle (sphere), as
we discussed in Section 6.2. The code snippet for random points inside a circle of
radius R is given below.



6.6. BUILDING A PARTICLE SOURCE FOR AN EXTENDED DETECTOR65

u = np . random . normal (0 , 1 , n )
v = np . random . normal (0 , 1 , n )
norm2 = (u∗u + v∗v ) ∗ ∗ ( 0 . 5 )
r = np . random . uniform (0 ,R, n ) ∗ ∗ ( 0 . 5 )
( x2 , y2 ) = r ∗(u , v )/norm2

Again, you can check this visually by plotting:

ax . s c a t t e r ( x2 , y2 )
ax . set_aspect ( ’ equal ’ )
p l t . show ( )

6.6 Building a Particle Source for an Extended De-
tector

We often need to simulate a detector with a finite extent in an isotropic radiation
field. The problem is sketched in Fig. 6.4. It is easy to solve for a point-like
detector, you simply simulate an isotropic radiation field as we did in Sec. 6.4. In
that case you use generate random points on a sphere (or hemisphere), as sketched
in the upper left of Fig. 6.4. But what do you do when you have an extended
detector such as the blue detector in the upper right of Fig. 6.4? The solution
is actually surprisingly simple. You combine the two methods of sections 6.4 and
6.5 as sketched in the bottom of Fig. 6.4. You need to take care that the circular
source (shown in red) is of at least the same size as the detector (shown in blue).
Then you emit radiation parallel to the radial direction which connects the center
of the source to the center of the detector.

Thus the recipe is to generate a unidirectional source which is of (at least) the
same size as the detector and place it at a sufficient number of random positions
on a spherical source surface.

Of course, there are other solutions to this problem. A more efficient one is to
start at a random point on the detector and then generate an isotropic field from
a hemisphere from that point. Then you iterate across the detector.

A less efficient, but easy to implement, solution is to distribute the inward-
pointing rays according to a cosine-distribution with respect to the radial direction.
To understand why that also works, we need to remember that the potential
inside a hollow sphere vanishes (for a homogeneous thickness of the shell). That
is equivalent to the statement that from every point inside a hollow sphere you
see the same surface inside a given solid angle. If you have already distributed
points randomly on a sphere that means that you will always see the same number
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?

Figure 6.4: Illustration how to generate an isotropic radiation field for an extended
detector (shown in blue).

(within counting statistics) of points in a given solid angle, independent of which
direction is points towards. This situation is summarized in Fig. 6.5.
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Figure 6.5: Illustration for an isotropic radiation field in a sphere.
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Chapter 7

Descriptive Statistics

This chapter makes a giant leap from distributions with their known (if they exist)
expectation values and variances or standard distributions to estimations of these.

The key point to remember is that we never know the “true” expectation
value and variance of the distribution function underlying a collection of
measurements. We can only do our best to accurately and precisely estimate
these quantities.

Example 7.1. Every car has a special on-off lighting system that allows other
drivers and pedestrians to observe the driver’s intentions regarding direction and
speed of travel – if it is used. It is called a blinker. Interestingly, one observes that
not all car drivers know about the presence of this useful property in their car.
What is the fraction of German car drivers who don’t blink when changing lanes
or turning right?
This is a question that is hard to answer. You can’t simply check every single
car and car driver all the time. The best you can do is to pick a carefully chosen
random sample of car drivers and observe their habits. Therefore, you will never
know the exact fraction of German car drivers who don’t blink when changing
lanes or turning right, but you will obtain an estimate of this fraction.

In the following we will always assume that we have n measurements or obser-
vations, x1, x2, . . . , xn, of a random variable, X, or of random variables, Xi. We
will also use θ as the general name for parameters in our models.
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Note that there is a difference between X and x: I will always write the
random variable X as a capital X, and the measurement as a small x. The
random variable X is the set of all possible values whereas the measurement
x is the realization of an “experiment”, i.e., it is one of the (possibly many)
possible values, X.

Definition 7.1. The range of possible values of the parameter, θ is called the
parameter space, Ω.

Definition 7.2. The function of Xi that is used to estimate θ, i.e., the statistic
u(Xi), is called a point estimator of θ.

Definition 7.3. The function of xi that is used to estimate θ, i.e., the statistic
u(xi), is called a point estimate of θ.

Note that an estimator acts on the random variable and the estimate uses the
measurements.

7.1 The Mean, the Mode, and the Median
Definition 7.4. Themean or average of a collection of nmeasurements is defined
as

x̄
.
=

1

n

n∑
i=1

xi. (7.1)

It is a point estimate for the unknown “true” mean of the full population from
which the sample was drawn.

Another useful estimator for some kind of “central value” of a population is the
most probable value or mode of the distribution or population. The problem
with it is that you need to bin your data which results in an uncertainty due to the
binning. Alternatively you can sort your data and use a sliding window to count
the number of measurements in that sliding window. The maximum is then close
to the most probable value. For instance in the case of the Landau distribution
described in chapter 5 the most probable value is the only “central” estimator that
can be computed.

Often the distribution of measurements has some outliers which can severely
influence the mean and it turns out that this is then not necessarily the best esti-
mator for the expectation value or some other “central” value of the distributions.
In that case it is often preferable to use the median of the distribution which is
more robust, i.e., not as strongly influenced by outliers. Figure 7.1 summarizes
the estimators for a “central value”.
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Figure 7.1: Illustration that the various estimators of the “central value” of a
population with a given probability density function can lie wildly apart. The red
and blue areas are the same and equal to 50% of the total area under the curve.

Definition 7.5. The median of a sample is defined by

median .
=

{
x(n+1)/2 if n is odd
(xn/2 + xn/2+1)/2 if n is even. (7.2)

Example 7.2. I have simulated a data set which is drawn from the sum of two
normally distributed random variables with the same mean but a different variance.
It is plotted as a black line in Fig. 7.2. In one run I generated 5 random samples
from this distribution and computed the mean and median. I repeated this 1000
times and created histograms of the computed means and medians. These are also
shown in Fig. 7.2 as red (mean) and blue (median) lines. Obviously, the median is
more peaked than the mean and also more peaked than the original distribution.
The latter is not surprising. We have seen how to generate random numbers in
chapter 6.
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Figure 7.2: The median (blue) is a more robust estimate of the “central value”
of the original distribution (black) than the mean (red). See example 7.2 for an
explanation.

The study of robustness of estimators is a relatively new subject in statistics.
Robust statistics attempt to estimate key properties of a population while
not being affected by outliers or other assumptions underlying the analysis.
Normality of the data points (i.e., a normal distribution) is often assumed
but not necessarily the case. As soon as there are outliers in the data,
ordinary statistical concepts may fail miserably... See section 7.7 for more
details.

7.2 Empirical Variance and Empirical Standard De-
viation

Definition 7.6. The empirical variance, s2 is defined as

s2 .
=

1

n− 1

n∑
i=1

(xi − x̄)2. (7.3)

Definition 7.7. The empirical standard deviation is the square root of the em-
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pirical variance,

s
.
=

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2. (7.4)

Note that it is the mean that enters these definitions, and only the mean!
The empirical variance is an estimate for the spread of the data (measure-

ments), the empirical standard deviation is a measure for the spread of the obser-
vations around the mean. The reason for the n−1 in the denominator is explained
in section 7.6.

scipy has a collection of useful utilities to compute the mean, median, variance,
and higher moments of a sample.

In : from sc ipy import s t a t s
In : from numpy import ∗
In : sample = array ( [ 0 , 1 , 4 , 2 , 7 , 3 , 3 , 6 , 2 , 0 , 8 , 4 , 9 ] )
In : s t a t s . d e s c r i b e ( sample )
Out : Desc r ibeResu l t ( nobs=13, minmax=(0 , 9 ) ,

mean=3.76923076923076 , var i ance =8.69230769230769 ,
skewness =0.417557727193064 , k u r t o s i s =−0.98607304148066)

Obviously, it is up to you to cull the output to a significant number of digits.
Skewness and kurtosis are described farther down in sec. 7.3. The median can be
called from numpy :

In : from numpy import ∗
In : sample = array ( [ 0 , 1 , 4 , 2 , 7 , 3 , 3 , 6 , 2 , 0 , 8 , 4 , 9 ] )
In : median ( sample )
Out : 3 . 0

7.3 Higher Moments of the Distribution

Of course, there are also higher moments of a distribution (function). Just as in
physics, their use becomes more and more obscure with increasing order. Formally,
they are derived from the usual moment-generating equations,

momentn .
= C

∫
xnp(x)dx or momentn .

= C
∑

xni p(xi),

where C is some normalization constant.
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Definition 7.8. The skewness of a sample is defined as

skew(x1, x2, . . . , xn)
.
=

1

n

n∑
i=1

(
xi − x̄
σ

)3

, (7.5)

where the σ = σ(x1, x2, . . . , xn is the sample’s standard deviation.

A positive skewness means that the sample has an asymmetric tail towards
higher values of x, a negatively skewed distribution has one extending towards
lower x than the central peak of the distributions. scipy provides a routine to
calculate the skew of a sample.

In : from sc ipy . s t a t s import skew
In : from numpy . random import randn
In : a = randn (25)
In : skew ( a )
Out : −0.22456310574520208

Now this is weird! We drew a normally distributed random sample from an under-
lying symmetric distribution and we obtained a negative skewness! It turns out
that any sample, even if drawn from a perfectly symmetric distribution, will have a
non-vanishing skew. The skewness defined in eq. 7.5 has to exceed a critical value
to be “real” or believable. This “critical value” depends on the shape of the under-
lying distribution and especially its tails. For a normal distribution, this value is
approximately

√
6/n (Press et al., 1989). In the example above skew(a) = −0.225

whereas
√

6/25 = 0.499, so the returned skewness should not be trusted. As these
authors state, “In real life it is good practice to believe in skewness only when they
are several or many times as large as this.”

Again, scipy provides a test for skewness,

In : from sc ipy . s t a t s import skewtest
In : from numpy . random import randn
In : a = randn (25)
In : skewtest ( a )
Out : SkewtestResult ( s t a t i s t i c =−0.54504429743656879 , \\

pvalue =0.58572305162445459) ,

where the statistic is the computed z-score for the test and the pvalue is the 2-sided
p-value for the hypothesis test. We will treat these quantities in more detail in
chapter 8, but give a short summary here. The z-score is the number of standard
deviations the result is away from the mean. In our case skew(a)/

√
6/25 ≈ 0.5

which is approximately the z-score. The difference is the exact value of the crit-
ical value. In other words, our result is only about half a standard deviation
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away from the mean which makes it a pretty probable result. That’s the second
output, the p-value. It is p ≈ 0.6 which is high. It gives the probability of a
random sample x1, x2, . . . , xn drawn from a normal distribution to show a skew-
ness, skew(x1, x2, . . . , xn), equal to or greater than this absolute magnitude, i.e.,
|skew(a)|. In chapter 8 we will learn how to decide whether to trust the result of
a (skewness) test.

The next higher moment of a sample or a distribution is its kurtosis which
describes how flat a distribution is on its top. The flatness is defined – what
else could we possibly do – relative to the “flatness” of a normal distribution. A
distribution with positive kurtosis looks like the Matterhorn, a distribution with
negative kurtosis looks like a mesa in New Mexico. The first is called leptocurtic,
the latter platykurtic, “and, you will no doubt be pleased to hear, an in-between
distribution is termed mesokurtic” (Press et al., 1989).

Definition 7.9. Fisher’s definition of kurtosis is given by

kurtosis(x1, x2, . . . , xn)
.
=

{
1

n

n∑
i=1

[
xi − x̄
σ

]4
}
− 3, (7.6)

where σ = σ(x1, x2, . . . , xn) is again the sample standard deviation and the −3
term makes the value vanish for a normal distribution. There is also Pearson’s
definition of kurtosis which does not subtract the 3. So be careful when considering
the kurtosis of your data.

The standard deviation of eq. 7.6 as an estimator of the kurtosis of an underly-
ing normal distribution is

√
24/n, but again you should not trust a kurtosis unless

it is much larger than that.
scipy also provides a routine to determine a sample’s kurtosis

In : from sc ipy . s t a t s import ku r t o s i s
In : from numpy . random import randn
In : a = randn (25)
In : k u r t o s i s ( a )
Out : −0.17020793396691625

There are bells and whistles to scipy ’s implementation of the kurtosis (and skew)
routines, look up the documentation! As for skewness, scipy also provides a test
for kurtosis,

In : from sc ipy . s t a t s import k u r t o s i s t e s t
In : from numpy . random import randn
In : a = randn (25)
In : k u r t o s i s t e s t ( a )
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Out : Kur t o s i s t e s tRe su l t ( s t a t i s t i c =0.32232765823657772 , \\
pvalue =0.74720448207756052) ,

where the same comments apply as for the skewness test.

7.4 Empirical Covariance and Empirical Correla-
tion Coefficient

The empirical covariance and empirical correlation coefficient are defined for n
pairs of observations, (x1, y1), (x2, y2), . . . , (xn, yn).

Definition 7.10. One defines the empirical covariance as

Covemp [x, y]
.
=

1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ). (7.7)

Definition 7.11. The empirical correlation coefficient r is then defined as

r
.
=

Covemp [x, y]

sxsy
, r ∈ [−1,+1]. (7.8)

It is also called Pearson’s correlation coefficient.

Beware that it is difficult to decide whether a correlation r > 0 is statistically
significant based on r alone. It has no knowledge of the distributions underlying
x and y. One often hears that a correlation is significant if it is larger than, say,
1/2 or even 2/3. While this may indicate a correlation, it does not necessitate a
correlation! If x and y are uncorrelated and the tails of their distributions fall off
“fast enough” and the number of observations is sufficiently large, say, n > 20, then
one can say that r is distributed approximately normally with a mean of zero and
a standard deviation of σ = 1/

√
n. This allows one to compute the probability

that a sample of n uncorrelated pairs will exhibit a correlation coefficient larger
than r, namely,

p = erfc

(
|r|
√
n√

2

)
,

where erfcx is the complementary error function. We discuss this kind of hypoth-
esis testing in more detail in chapter 8.

scipy provides a routine to calculate Pearson’s correlation of two data sets
(necessarily of the same length).



7.5. MAXIMUM-LIKELIHOOD ESTIMATION 77

In : from sc ipy . s t a t s import pearsonr
In : from numpy . random import randn
In : a = randn (25)
In : b = randn (25)
In : pearsonr ( a , b )
Out : (−0.212 , 0 . 31 )

The first number in the output is Pearson’s correlation coefficient and the second
is the probability that two normally distributed random samples would have such
a correlation.

Exercise 7.1. Because of this uncertainty in interpreting the significance of a
correlation r, other, more robust tests for correlation have been developed. A
popular one is Spearman’s rank-order correlation. Read up on it in Press et al.
(1989) or elsewhere!

Example 7.3. Note that correlation is not all there is to data...! Anscombe
(1973) invented four data sets with near-identical correlation coefficients and linear
regression lines. In fact, the data sets also have the same means of x and y
and variances of x and y. The statistical properties of these four data sets are
summarized in the table below and the data are shown in Figure 7.3 together with
their regression lines.

X1 Y1 X2 Y2 X3 Y3 X4 Y4

n 11 11 11 11 11 11 11 11
mean 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5
variance 11.0 4.13 11.0 4.13 11.0 4.12 11.0 4.12
r 0.816 0.816 0.816 0.816
y(x) = ax+ b (a, b) = (0.5, 3.00) (0.5, 3.00) (0.5, 3.00) (0.5, 3.00)

Anscombe (1973) made the important point which you shall also not forget:
“Plot your data!”, see Fig. 7.3.

7.5 Maximum-Likelihood Estimation
Sofar, we have simply given definitions of estimators or estimates of certain (im-
portant) properties of the population under study. But what makes these esti-
mators “good ones”? In other words, what makes a statistic u(Xi) better than
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Figure 7.3: When Anscombe’s data sets are visualized it is obvious that they are
not the same. But their statistical descriptions are near-identical! (Anscombe,
1973)

some other statistic v(Xi)? Consider the problem at hand. We have a random
sample x1, x2, . . . , xn with an underlying probability density function p(X) which
is governed by some paramter, θ. We need to find a good statistic u(Xi) so that
u(x1, x2, . . . , xn) is a good point estimate for θ. As usual, xi are the observed or
measured values of the random variables Xi.

Example 7.4. You plan to take a random sample X1, X2, . . . , Xn of a population.
You assume that it is normally distributed (central limit theorem) with mean µ
and variance σ2. You now want to find a “good” estimate of µ and σ2 using your
measured or observed values of Xi, xi.

So what makes an estimator “good”? Remember that you only have your
measurements and a model of the underlying population. One generally accepted
criterion is the following. A good estimate of the parameter θ is one that maximizes
the probability or maximizes the likelihood that you observe the measurements you
made. This is the objective ofmaximum-likelihood estimation. Note also how
we formulated the problem. A good estimate of the parameter θ maximizes the
likelihood of obtaining your data – even if they have uncertainties.

The beauty of this method is that we already have prepared all the necessary
ingredients. Suppose that we have a random sample, x1, x2, . . . , xn, for which we
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have probability density functions for each Xi, p(Xi, θ). Then the joint probability
density function of X1, X2, . . . , Xn is given as L(θ)

L(θ)
.
= P (X1 = x1, X2 = x2, . . . , Xn = xn) = p(x1, θ)·p(x2, θ) · · · p(xn, θ) =

n∏
i=1

p(xi, θ),

(7.9)
which treats each random variable as independent because we have drawn inde-
pendent random samples. All we need to do now to find the maximum-likelihood
estimate of θ is to find the value of θ which maximizes the function L(θ)! So we
have reduced a complicated and somewhat arbitrary problem (What is a “good”
estimate?) to a neat mathematical one that we know how to solve! All we need
to do is to minimize the “merit function” (or maximize the likelihood).

Example 7.5. Consider the estimation of the fraction of all studentsX1, X2, . . . , XN

who are left-handed. We estimate this by observing n = 100 students, x1, x2, . . . , x100,
writing an exam.
This is a classical Bernoulli (or binomial) problem. We have two properties, left-
or right-handed, to which we assign values 0 and 1. The Xi are independent and
have the unknown parameter, p, and the probability density function for each Xi

is

P(xi, p) = pxi(1− p)1−xi ,

for xi = 0 or 1 and 0 ≤ p ≤ 1. The likelihood function L(P(p)) = L(p) is now
given by

L(P) =
n∏
i=1

P(xi, p) = px1(1−p)1−x1·px2(1−p)1−x2 · · · pxn(1−p)1−xn = p
∑
xi(1−p)n−

∑
xi ,

where n = 100 in our example. To maximize the likelihood we need to find the
value of p that maximizes L(p), i.e., to take the derivative of L(p) with respect to
p and set it equal to zero. Note that we need to take the derivative of a product
which is likely to be tedious. We use the conventional trick to take the logarithm
of L(p) first and then differentiate. This will still yield the most likely value for p
because the logarithm is a continuous and monotonically increasing function. So
we now have

ln(L(P)) =
n∑
i=1

ln(pxi) +
n∑
i=1

(1− p)n−xi = (
n∑
i=1

xi) ln(p) + (n−
n∑
i=1

xi) ln(1− p).
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This is easily differentiated with respect to p:

∂ ln(L(P))

∂p
=

∑
xi
p
− n−

∑
xi

1− p
.
= 0,

0 = p(1− p)
∑
xi
p
− p(1− p)n−

∑
xi

1− p
,

0 =
∑

xi − p
∑

xi − np+ p
∑

xi,

0 =
∑

xi − np or

p̂ =

∑
xi
n

. (7.10)

So we have found that the maximum-likelihood estimator for p is

p̂ =

∑
Xi

n
,

and the maximum-likelihood estimate for p is

p̂ =

∑
xi
n

,

just as we expected.

Note the use of estimator with capital letters for the random variables, Xi and
estimate with small xis. The first is the statistic acting on the random variable,
the second is the estimate based on your measurements. It is only the latter that
is measurable. The first is a “concept” and the latter is its realization.

Let us consider a second and somewhat more complicated example.

Example 7.6. Consider a random sample x1, x2, . . . , xn from a population which is
normally distributed with unknown mean µ and variance σ2. Find the maximum-
likelihood estimates for µ and σ2.
Here we have a probability density function which depends on two parameters,
θ1 = µ and θ2 = σ2,

p(xi;µ, σ
2) =

1√
2πσ2

exp

(
−(xi − µ)2

2σ2

)
.

The likelihood function then is

L(θ1, θ2) =
n∏
i=1

p(xi; θ1, θ2) =

(
1√

2πθ2

)n
exp

(
−
∑n

i=1(xi − θ1)2

2θ2

)
.
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The logarithm is

ln (L(θ1, θ2)) = −n
2

(ln(2π) + ln(θ2))−
∑n

i=1(xi − θ1)2

2θ2

.

We first compute the estimate for the mean, µ = θ1 by differentiating with respect
to θ1 and requiring this derivative to vanish.

0 = 0− 2

∑n
i=1(xi − θ1)

2θ2

· (−1)

Multiplying by θ2 6= 0 and dividing by 2 we obtain

n∑
i=1

xi − nθ1 = 0 and hence θ̂1 =

∑
xi
n

= x̄,

i.e., that the mean or average is the maximum-likelihood estimator for µ.

To obtain the maximum-likelihood estimate of the variance, θ2 = σ2, of the
previous example we proceed in exactly the same way. Take the derivative with
respect to θ2, set it equal to zero and solve for θ2.

∂ ln(L(θ1, θ2))

∂θ2

= − n

2θ2

+

∑
(xi − θ1)2

2θ2
2

,

0 = −nθ2 +
∑

(xi − θ1)2,

θ̂2 = σ̂2 =

∑
(xi − θ1)2

n
, (7.11)

where we have multiplied by 2θ2
2 in the second line.

Note that the maximum-likelihood equations for normally-distributed errors
result in a minimization problem for the sum of squares of the residuals,∑n

i=1(xi − x̄)2

2σ2
.

The quantity to be minimized is somethimes also called the “merit func-
tion” or “objective function”. In the case of normally-distributed errors the
maximum-likelihood estimator is an ordinary least-squares (OLS) estimator.
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7.6 Unbiased Estimators and Estimates
An estimator or estimate should not only maximize the likelihood of the observa-
tion, but it should also be unbiased in the sense that its expectation value should
be the quantity being estimated. More formally,

Definition 7.12. The statistic u(X1, X2, . . . , Xn) is an unbiased estimator of the
parameter θ if E [u(X1, X2, . . . , Xn)] = θ.

Example 7.7. In example 7.5 we showed that p̂ =
∑
xi
n

was the maximum-
likelihood estimate for the fraction of left-handed students. Is it also an unbiased
estimate of p?
To show this we compute the expectation value

E [p̂] = E
[

1

n

∑
Xi

]
=

1

n

n∑
i=1

E [Xi] =
1

n

n∑
i=1

p =
1

n
np = p,

so p̂ is indeed also an unbiased estimator for p.

Let us also consider the maximum-likelihood estimates from example 7.6,

θ̂1 =

∑
xi
n

and θ̂2 =

∑
(xi − θ1)2

n
,

and verify whether they too are unbiased estimates.

Example 7.8. We begin with the easy part, to show that θ̂1 =
∑
xi
n

is unbiased.
We again compute the expectation value,

E
[
θ̂1

]
= E

[∑
Xi

n

]
=

1

n

∑
E [Xi] =

1

n

∑
µ =

1

n
nµ = µ,

and so we see that θ̂1 =
∑
xi
n

is an unbiased and also a maximum-likelihood estimate
of the mean.
To show that θ̂2 =

∑
(xi−θ1)2

n
is an unbiased estimate of σ2 is a different matter

altogether. . . First we prepare the following

σ̂2 =

∑
(Xi − θ1)2

n
,

=
1

n

∑(
X2
i − 2Xiθ1 + θ2

1

)
,

=
1

n

∑
X2
i − 2

∑
Xi

n
θ1 +

1

n

∑
θ2

1,

=
1

n

∑
X2
i − 2θ1θ1 + θ2

1,

σ̂2 =
1

n

∑
X2
i − θ2

1. (7.12)
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Furthermore, we remind ourselves that the variance Var
[
X̄
]

= E
[
X̄2
]
− (E

[
X̄
]
)2

and thus E
[
X̄2
]

= Var
[
X̄
]

+ (E
[
X̄
]
)2 which we use in our computation of the

expectation value of the estimator of the variance, σ2.

E
[
σ̂2
]

= E
[

1

n

∑
X2
i − θ2

1

]
= E

[
1

n

∑
X2
i

]
− E

[
θ2

1

]
,

=
1

n
E
[∑

(Xi − µ+ µ)2
]
− E

[
X̄2
]
,

=
1

n

∑(
E
[
(Xi − µ)2

]
− 2E [(Xi − µ)µ] + E

[
µ2
])
− Var

[
X̄
]
− (E

[
X̄
]
)2,

=
1

n

∑(
E
[
(Xi − µ)2

]
− 2µE [Xi − µ] + E

[
µ2
])
− σ2

n
− µ2,

=
1

n

(
nσ2 + nµ2

)
− σ2

n
− µ2,

= σ2 + µ2 − σ2

n
− µ2,

E
[
σ̂2
]

= σ2 − σ2

n
=
n− 1

n
σ2 6= σ2. (7.13)

In other words, the maximum-likelihood estimator of σ2 is not an unbiased esti-
mator!

So what shall we do to find an unbiased estimator of the variance? The easiest
way out is to notice that E [σ̂2] only differs from σ̂2 by a factor (n−1)/n. Remember
the definition of the variance

σ2 =
1

n

∑
(xi − µ)2.

We can easily account for the correction factor by defining a new variance,

s2 .
=

1

n− 1

∑
(xi − x̄)2.

Obviously, s2 = n
n−1

σ2, and so s2 is now an unbiased estimate for the sample
variance.

Exercise 7.2. Verify that this is, indeed, true.

The correction σ2 −→ s2 or rather to use n−1 instead of n in the denominator
is called Bessel’s correction. It corrects the bias in the estimation of the popu-
lation variance, and partially corrects it for the standard variation. An intuitive
explanation for the reason to use n − 1 instead of n is the following. Consider
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a population with unknown mean and variance. You now take n independent
samples and compute the sample mean and the residuals:

(x1 − x̄), (x2 − x̄), . . . , (xn − x̄)

You have n residuals, but how many independent residuals do you have here?
Consider taking the sum of the residuals:

n∑
i=1

(xi − x̄) =
n∑
i=1

xi −
n∑
i=1

= nx̄− nx̄ = 0.

The residuals all make use of one common sample mean to which they all con-
tribute. Sloppily speaking, the sample mean has “used up one degree of freedom”.
So the “correct” number of degrees of freedom to use when computing the sample
variance is n− 1. Note that you need to make Bessel’s correction only if you are
estimating both the population mean and variance from the same sample.

I’d like to cut this discussion short now and quote Press et al. (1989) who write:
“We might also comment that if the difference between N and N − 1
ever matters to you, then you are probably up to no good anyway – e.g.,
trying to substantiate a questionable hypothesis with marginal data.”

7.7 Robust Estimation
Usual descriptive statistics make an important assumption, namely that we know
the model which underlies the data we are considering. In most cases, this model
is a normal distribution, i.e., we implicitly assume that the errors are normally
distributed. Real-life experience shows that i) we rarely know the underlying
model as well as we should, and ii) there are outlier data points in the data more
often than expected. These two points are often connected. Robust statistics
attempt to provide methods which can deal with outliers and deviations from the
models and still provide meaningful results/estimates.

The problem with usual estimators is that they often perform poorly when
outliers are present. We already saw this in Fig. 7.2 which compares the perfor-
mance of the median and the mean in the presence of outliers. There I mixed two
normal distributions with the same mean but different variances with the wider
distribution accounting for 10% of the narrow distribution (this is the black curve
in Fig. 7.2). This mimicked the presence of occasional outliers in the data.

Figure 7.4 shows some classical data from Newcomb’s measurements of the
speed of light. He measured the time it took light to pass from his laboratory
at the United States Naval Observatory to a mirror attached to the Washington
Monument and back again to his laboratory. You can see that the results are
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Figure 7.4: Histogram of the light travel-time measurements taken by Newcomb.

quite precise (fractions of milliseconds) but that there are also two outliers in the
data. Obviously, these will have consequences for the final result, as is shown in
the numbers for the mean and the median in Fig. 7.4.

There are two important concepts in robust estimation, the breakdown point
and the influence function.

7.7.1 The Breakdown Point

Definition 7.13. The breakdown point of an estimator (the mean or the median,
for example) is the fraction of outliers or incorrect measurements which it can
tolerate before it yields incorrect results.

Example 7.9. The mean has a breakdown point of 0%. Consider x1, x2, . . . , xn
observations. Then the mean, computed as x̄ = (1/n)

∑
xi can be arbitrarily

wrong by having only one single corrupted observation, xi.

The larger the breakdown point of an estimator, the better. Obviously, the
breakdown point cannot exceed 50%. If more than 50% of the observations are
corrupted, it is impossible to distinguish which are the “real” and which are the
“wrong” measurements. The median has a breakdown point of 50%. The X%-
trimmed mean has a breakdown point of X%. It is computed by removing X% of
the data from both ends of the data and then computing the mean.
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Example 7.10. Consider again the speed-of-light measurements. Removing the
two outliers results in a much-improved mean which is comparable with the me-
dian.

7.7.2 The Influence Function

In section 7.5 we saw that assuming an underlying normal distribution, minimizing
the sum of the square of the differences,

∑
(xi − µ)2, is a maximum-likelihood

estimator of the mean, µ. This is often called the “Ordinary Least Squares (OLS)”
method (see page 81). The difficulty of OLS in the presence of outliers is that
their weight increases quadratically with their “distance” to the empirical mean,
x̄, which is called residual (see page 84). This means that outliers with arbitrarily
large residuals can have an arbitrarily large influence on the resulting estimate.

One way out of this is the use of so-called M-estimators, which limit the influ-
ence of outliers by replacing the square of the residuals by a merit function which
increases less rapidly with the residual. This new “merit function” or “objective
function” is then called an “influence function”. They are in a sense a generaliza-
tion of the concept of maximum-likelihood estimators, the difference being that
they make no pretence at having any relation to the probability density function
presumably underlying the data. While maximum-likelihood estimators try to
maximize

∏
i p(xi) or, equivalently, minimize −

∑
i log p(xi), M-estimates general-

ize this concept to the minimization of
∑

i ρ(xi) where ρ is some suitably chosen
function. This minimization of

∑
i ρ(xi) corresponds to solving

∑
i Ψ(xi) = 0

where Ψ(xi) = dρ(x)/dx if Ψ(x) exists.
There are many possibilities of M-estimators, four examples are shown in

eqs. 7.14 to 7.17.

ρ(x) = x2 Ψ(x) = 2x, (7.14)
ρ(x) = |x| Ψ(x) = x/|x|, (7.15)

ρ(x) =

{
x2 for|x| < c
|x| for|x| ≥ c

Ψ(x) =

{
x/|x| for|x| < c
2cx/|x| for|x| ≥ c

(7.16)

ρ(x) =

{
x6

6c4
− r4

2c2
+ x2

2
for|x| < c

c2

6
for|x| ≥ c

Ψ(x) =

{
x
(

1− x2

c2

)2

for|x| < c

0 for|x| ≥ c
(7.17)

Eq. 7.14 is nothing else than OLS and only serves as an illustration. Eq. 7.15 is
an M-estimate which minimizes the absolute deviation, |x|, instead of the square,
x2. Eq. 7.16 is called Windsoring at a threshold c. For residuals which are less
than the threshold, Windsoring ensures an objective function which increases like
a least-squares function, for larger residuals, it only increases linearly. Eq. 7.17 is
Tukey’s bi-weight. It is defined by its Ψ(x) function and its ρ(x) function must be
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found by integration. It increases rapidly for residuals |x| < c and is constant to
|x| ≥ c.

Because Tukey’s biweight is defined by its Ψ(x), we need to find ist ρ(x) by
the integral given in eq. 7.18.∫

Ψ(x)dx =

∫
x

(
1− x2

c2

)2

dx. (7.18)

This is easily found by making the substitution

u = 1− x2

c2
⇐⇒ du = −2x

c2
dx,

and inserting
x = c

√
1− u

into eq. 7.18 to obtain∫
x

(
1− x2

c2

)2

dx = −c
2

2

∫
u2du = −c

2

2

u3

3
,

= −c
2

6

(
1− x2

c2

)3

,

= +
x6

6c4
− x4

2c2
+
x2

2
− c2

6
, (7.19)

where the constant c2/6 is unimportant because it is constant and it is the deriva-
tive which counts for minimization.

The influence functions are shown in Fig. 7.5.

7.8 Quantiles
The median is the simplest example of a quantile, it is the 2-quantile. 50% of all
measurements lie below it, 50% above. This concept can be generalized to different
quantiles: tertiles (values for 33.3̄3% bins), quartiles (values for 25% bins), etc.

Definition 7.14. Quantiles are cut points that divide the distribution into inter-
vals with the same number or fraction of measurements. The k-th q-quantile is the
value along the x-axis, i.e., the data value for which the cumulative distribution
function crosses k/q. In other words, x is the k-th q-quantile if cdf(x) = k/q.

Thus there are three 4-quantiles or cut points for the four quartiles of a normal
distribution, as is shown in Fig. 7.6.
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Figure 7.5: Summary plot of various influence functions. From left to right: ordi-
nary least squares (OLS), absolute deviation, Windsoring, and Tukey’s biweight.
The top row shoes the objective function, the bottom row its derivative.
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Figure 7.6: Illustration of the concept of quantiles. The shaded areas under the
probability density function (pdf) all have the same area, i.e., they contain the
same fraction of all measurements. This plot illustrates quartiles of a normal
distribution. The quartiles are −0.674, 0, and +0.674.

7.9 Binning Your Data – To Bin or not to Bin

Before you believe any statistical result about your data – plot it! But how?
Fig. 7.7 shows a time series of the bulk speed and thermal speed of α-particles in the
solar wind as measured by the Solar Wind Ion composition Spectrometer (SWICS)
(Gloeckler et al., 1998) instrument on the Advanced Composition Explorer (ACE)
(Stone et al., 1998).

Let us see what we can do to describe these data statistically. The easiest things
to do are to determine the mean and variance of these solar wind properties. You
can download the data from the ACE Science Center http://www.srl.caltech.
edu/ACE/ASC/level2/. I have saved them as a file called ACE_SWICS2_Data-
for-2016.txt.

In : from sc ipy . s t a t s import d e s c r i b e
In : from numpy import l oadtx t
In : doy , vHe2 , vthHe2 , vHe2_err , vthHe2_err , qf_He =

loadtx t ( ’ACE_SWICS2_Data−f o r −2016. txt ’ ,
sk iprows=31,unpack=True )

In : m = (qf_He == 0)∗ ( vHe2 > 0 . ) #qua l i t y f l a g .
#Only use va lues with q f \_He == 0 , i . e . ,
#with in SWICS s e n s i t i v i t y range .

http://www.srl.caltech.edu/ACE/ASC/level2/
http://www.srl.caltech.edu/ACE/ASC/level2/
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Figure 7.7: Bulk speed (top panel) and thermal speed (bottom panel) of α-particles
in the solar wind vs. time as measured by the Solar Wind Ion Composition Spec-
trometer (SWICS, Gloeckler et al. (1998)) in 2016. The data are from the ACE
Science Center, see text for url.
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In : d e s c r i b e (vHe2 )
Out : Desc r ibeResu l t ( nobs=4377 , minmax=(266.37 , 768 . 34 ) ,

mean=461.7733 , var i ance =12487.177 , skewness =0.588 ,
k u r t o s i s =−0.537)

In : from sc ipy . s t a t s import skewtest
In : skewtest ( vHe2 [m] )
Out : SkewtestResult ( s t a t i s t i c =14.794 , pvalue=1.61e−49)
In : from sc ipy . s t a t s import k u r t o s i s t e s t
In : k u r t o s i s t e s t ( vHe2 [m] )
Out : Kur t o s i s t e s tRe su l t ( s t a t i s t i c =−10.065 , pvalue=7.88e−24)

The bulk α-particle solar wind speed varies around a mean, v̄He2 = 461.77 km/s
with a variance σ2 = 12487.177 (km/s)2. The distribution is skewed towards higher
solar wind speeds and is platykurtic. The probabilities that a random sample
(drawn from a normal distribution) would show such skewness and kurtosis is
extremely small. But is this a sensible thing to do? Does it really make sense
to compute the average solar wind speed? Are variance, skewness and kurtosis
sensible ways of describing the distribution of the solar wind?

One obvious thing to do would be to plot thermal speed vs. bulk speed and
look for a possible correlation. This is easily done and we observe in Fig. 7.8 that
thermal speed increases with bulk speed. We can test for correlation

In : from sc ipy . s t a t s import pearsonr
In : pearsonr ( vHe2 [m] , vthHe2 [m] )
Out : ( 0 . 8 95 , 0 . 0 )

which tells us that indeed, the two quantities are correlated with a correlation
coefficient (eq. 7.8) r = 0.895. The probability for two random variables drawn
from two normal distributions to show such a correlation is zero (the second number
in the output).

Exercise 7.3. Download data from the ACE Science Center and perform these
statistical tests and plot the data accordingly.

Inspection of your plot (fig. 7.8) which shows thermal speed vs. bulk speed will
show that vthα is not a linear function of vα. Moreover, it shows that there appears
to be a problem with the determination of solar wind speeds and thermal speeds
which results in a stripe-like pattern extending from low to high thermal speeds.
This is – once again – a warning: Always plot your data!

We have sofar nicely avoided the question posed at the beginning of this section,
i.e., how to plot the data so we can say whether the nice statistical analysis results
from scipy are reliable. This then, brings us to one of the murkiest waters in data
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Figure 7.8: Thermal speed vs. solar wind speed (of α-particles). Data are from the
ACE Science Center as described in the text.

analysis, the binning of data. This is done very often, and very often it hides more
than it reveals. . .

In Fig. 7.4 I binned the Newcomb’s measurements of the travel time of light
between his lab and the Washington monument and back again into 25 bins. The
result looks OK. But note that I introduced a bias here. I could have chosen a
finer binning or a coarser binning and the plot may not have looked the same.
Let’s do this with the solar wind data of the previous example. Figure 7.9 shows
histograms of the bulk speed of α-particles using varying bin widths but always
the same minimum and maximum of the bins. The upper left plot was made using
matplotlib’s hist plot routine, for the others I first used numpy ’s histogram
routine with self-defined bins and then plotted the results. The top right histogram
has 10 bins, the lower left has 20, and the lower right 40.

Figure 7.10 shows the influence of how one bins. The top left panel shows the
results for 40 bins stretching from the minimum to the maximum of the α-particle
bulk speeds, i.e., from 266.37 km/s to 768.34 km/s (see results in the listing shown
on page 91). The top right panel shows the histogram with 40 bins stretching
from xmin− 5 km/s to xmax + 5 km/s. The bottom left panel shows the histogram
with 40 bins stretching from xmin − 5 km/s to xmax − 5 km/s, and the bottom
right one stretches from xmin + 5 km/s to xmax + 5 km/s. Note that the bin width
with 40 bins is about 12.5 km/s, considerably wider than the 5 km/s shifts which I
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Figure 7.9: Histograms of solar wind α-particle bulk speeds.

made. Nevertheless, the histograms look different, and different “features” appear
for different binning1. There is also an other difference between the histograms in
Fig. 7.9 and 7.10, and that is the labeling of the y-axis. It has relatively meaningful
physical units instead of “counts per bin”.

The fact that different binning of the same data results in different histograms
is by no means rare. It is also the reason why I called binning of data one of the
murkiest waters in data analysis. Not every feature which is visible when you bin
your data is real. You can also hide features in your data by appropriate binning
and choice of the y-axis, but that is something I’m not going to teach you here.
Binning is useful if you don’t have a model for the underlying distribution. It is a
powerful tool to explore data, but it can also be deceptive, so use it with caution.
Don’t forget that you are throwing away useful information by binning. If you
know the underlying distribution, you are better off to keep the full information
and fit the distribution to the data, a technique which is presented in chapter 9.

When binning your data – always – try several different binnings
and only trust features which are visible with all binnings!

1These are probably caused by the “stripes” in solar wind speed seen in fig. 7.8.
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Figure 7.10: Histograms of solar wind α-particle bulk speeds using the same num-
ber of different bins. See text for discussion.



Chapter 8

Hypothesis Testing

8.1 Simple Hypothesis Testing
We are often faced with a situation in which we need to decide whether something
is “true” or “false” and need to decide this on the basis of statistical data, of a
sample of the underlying population. In many cases, such decisions are possible if
we allow for two kinds of errors:

1. Type I Error: We erroneously reject a true hypothesis

2. Type II Error: We erroneously accept a false hypothesis

It turns out that one can even give a probability for the two errors - if we under-
stand the problem!

The procedure is always the same: We postulate a null hypothesis, H0,
and use a statistical test to reject or accept it. Often, H0 is tested against an
alternative hypothesis, H1. As a general rule, one also defines a significance
level, α, before one performs the statistical test. One then performs the statistical
test and compares the results with a test statistic. If the probability of the result is
less than α, then one rejects the null hypothesis, and says that the null hypothesis
is rejected at a significance level of α. If the probability is larger, the we cannot
reject the null hypothesis and we say that H0 is accepted at significance level α or
that we cannot reject H0 at significance level α. More about this after a few first
examples.

Example 8.1. Let us again consider our good old die which in the past weeks has
been showing some strange behavior. Let us define the null hypothesis that the
probability of throwing a “6” is p(6) = 1/6, in other words, H0 : p(6) = 1/6. We
have a faint suspicion that a “6” may be more probable, so we define the alternative
hypothesis, H1 : p(6) > 1/6. We also define the significance level as α = 5% which

95
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is a typical significance level. It tells us that we have a chance of falsely rejecting
H0 or of falsely accepting H1 of 5%.
Now assume that we throw the following results:

[3, 6, 5, 6, 4, 6, 1, 6, 1, 4]

Thus we have four sixes in 10 throws. We can compute the probability of throwing
at least four sixes in ten throws,

P =
10∑
i=4

(
10

i

)
(1/6)i (5/6)10−i = 7.5%.

Because 7.5% is larger than our chosen significance level of α = 5% we cannot
reject the null hypothesis and we report that the data are consistent with a fair
die at the 5% significance level. Had we thrown 5 sixes, then the story would be
different,

P =
10∑
i=5

(
10

i

)
(1/6)i (5/6)10−i = 1.8%

which is smaller than our chosen significance level of 5% and we would have re-
ported that we rejected the null hypothesis in favor of the alternative hypothesis
at a significance level of 5%. Here the probability of committing a type I error
would be 1.8% (if we had done the experiment with a fair die).

Example 8.2. Consider again your coffee machine company. You suspect that
your subcontractor is cheating you by supplying you with parts of a lesser quality
than contractually agreed. The contract says that there shall be no more than 1
defective part in one hundred parts. You just received a load of 100 parts of which
3 were defective. Is the company cheating you?
You again choose a significance level of 5% and your null hypothesis, H0 that the
company is not cheating you. The alternative hypothesis, H1, is that the company
is cheating you. The probability that three parts out of 100 are defective if the
expectation value is 1 out of 100 is

P =
100∑
i=3

(
100

i

)
0.01i 0.99100−i = 7.9%,

and you cannot reject the null hypothesis and you cannot sue your subcontractor.
Two months later you find that you have received a total of 16 defective parts out
of 500. Now

P =
500∑
i=16

(
500

i

)
0.01i 0.99500−i = 0.34%,
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Figure 8.1: Illustration of one-sided (left) and two-sided (right) testing for a sig-
nificance level α = 5%.

and you go and have a long talk with your lawyers. . .
Note that we cannot approximate the binomial distribution with a normal distri-
bution because np < 5.

Example 8.3. Let us consider another distribution but again with your favorite
company. You normally sell 4 coffee machines per day, but the day after an article
about your company in the local newspaper, you sold 9 coffee machines. Is this a
significant increase? Again, choose α = 5%. The probability of selling 9 or more
coffee machines per day is computed using the Poisson distribution (sec. 5.9),

P =
∞∑
i=9

4i

i!
exp(−4) = 2.14%,

and you conclude that this is a significant increase in sales.

The examples we have looked at so far are examples of so-called one-sided hy-
pothesis tests. Often, one needs to consider two-sided hypothesis tests, for instance
because we want to decide whether something is outside specified bounds. This is
illustrated in Fig. 8.1. The shaded areas in the left- and right-hand panels cover
α = 5% of the total area under the normal distribution. In the one-sided test
(left-hand panel) we test only for measurements or observations which are larger
than 1−α of the distribution, whereas in the two-sided test (right-hand panel) we
test for measurements/observations which lie outside 1−α of the distribution, i.e.
on both sides of the distribution.

Take a close look at the right-hand panel. You see that the α/2 areas on both
ends of the distribution start at approximately ±2, i.e., 2×α/2 = 2×2.5% = 5% of
the distribution lies outside about ±2 of the standard normal distribution N (0, 1)
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which is plotted here. This is exactly the rule of thumb discussed on page 49, ∼ 5%
of the data lie outside ±2σ of the distribution. If we went to a smaller significance
level, say, α = 1.25, then this area would be smaller and the probability of a type
I error would diminish.

Example 8.4. An example from your coffee-machine company will help illustrate
the need for two-sided tests. You’ve asked you quality assurance (QA) engineer
to investigate some parts (shafts) which have been supplied by your problematic
sub-contractor. The specification calls for their diameter to be d = 2.5± 0.1 mm
so that your coffee machines can operate flawlessly. Out of a delivery of 100 shafts,
your QA engineer picks 10 at random and measures their diameter:

d = [2.8, 2.55, 2.6, 2.3, 2.4, 2.5, 2.2, 2.8, 2.45, 2.6]

He is now faced with two problems:
1) Is the mean consistent with dspec = 2.5± 0.1 mm?
2) Is the distribution around the mean consistent with ±0.1 mm?
We will consider both problems later on in this chapter. Addressing them requires
some more background which we first need to develop.

8.2 Confidence Intervals
Given the discussion of Fig. 8.1 you have already a reasonable feeling for what
a confidence interval is. It is an interval which - for a symmetric distribution -
is centered on the expectation value and gives you a measure for how likely it is
that you will find the mean of your observations inside the confidence level. The
problem is that we don’t know the true mean of the population and that we don’t
know the standard deviation (or variance) of the population. All we have is a
sample taken from the population and its mean and standard deviation:

Full population︷ ︸︸ ︷
µ =

1

N

N∑
i=1

xi, σ =

√∑N
i=1(x− µ)2

N
−→

Sample︷ ︸︸ ︷
x̄ =

1

n

n∑
i=1

xi, s =

√∑n
i=1(x− x̄)2

n− 1
,

(8.1)
where N includes every single element of the population, and n the entitites in
the sample. Normally, we have n� N because we can’t know the full population
because the test is too expensive or possibly also destructive. It does not make
any sense to test the entire population if you break it by doing so. . .

Assume that we have a sample with sample mean x̄ and known population
standard deviation σ. How confident can we be that the sample mean is within a
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certain range around the population mean? In other words, we would like to know
with a certain confidence level α that

P (x̄ ∈ µ± z σ√
n

) = 1− α. (8.2)

Now, since |x̄− µ| = |µ− x̄|, this is equivalent to

P (µ ∈ x̄± z σ√
n

) = 1− α. (8.3)

In other words, if we can find the appropriate value of z we can give a confidence
interval in which the mean of the distribution will lie with a probability 1−α. I’m
sure that you remember that the error of the mean is σ/

√
n, that is the reason

why we use ±σ/
√
n for the confidence interval of the mean. Now you will also

remember that we found that 68% of all normally distributed data points should
lie within ±σ of the mean, and 95.4% of all data points within ±2σ. So how large
does z need to be that x̄± zσ/

√
n contains µ with a probability of 1− α = 95%?

This means that

1√
2πσ2

∫ x̄+zσ/
√
n

x̄−zσ/
√
n

exp

(
−(x− x̄)2

2σ2

)
dx = 1− α. (8.4)

This value is often tabulated, but you can also find it using scipy . In the following
example we compute this interval for α = 5% to find z = 1.96:

In : from sc ipy . s t a t s import norm
In : norm . i n t e r v a l ( 0 . 9 5 )
Out : (−1.96 , 1 . 96 )

This value z is often called the z-critical value and is appropriate only for normal
distributions because we are making the underlying assumption that the random
variable,

x̄− µ
σ/
√
n
∼ N (0, 1),

i.e., that this random variable is distributed as a standard normal distribution. I
give a few values for the z-critical value in Tab. 8.1.

1− α 0.68 0.80 0.90 0.95 0.954 0.99 0.997
z 0.99 1.28 1.64 1.96 2.00 2.58 2.97

Table 8.1: Some typical values of the z-critical value.
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Summary 8.1. You can give a confidence interval for the mean of the
population to lie within a 1−α confidence interval using ±z1−ασ/

√
n around

the sample mean x̄, where z1−α is the z-critical value and σ is the known
population standard deviation. If the z-critical value is expressed in numbers
of standard deviations, then it is often called a z-score.

Now it will hardly come as a surprise to you that the mean, µ, and the variance,
σ2 are two independent random variables. Well, it should, I’m sorry to say. This
is only true for a normal distribution. We just saw that we can estimate the
probability for the population mean, µ, to lie within a confidence interval around
the sample mean, x̄. The problem is that we don’t know the population variance,
σ2! This then brings us to the next distribution, the χ2-distribution.

8.3 The χ2-Distribution and χ2-Tests
Following the discussion leading up to this section, we have a random variable,

x− x̄,

which we assume to be normally distributed around zero. In many cases this will
be assured by the central limit theorem, but it is not necessarily so, a counter
example are the throws of a die. To estimate the variance of the population we
would simply use

s2 =
1

n

n∑
i

(xi − x̄, )2, or s2 =
1

n− 1

n∑
i

(xi − x̄, )2, (8.5)

as we saw in the definition of the empirical variance or sample variance, eq. 7.3. Be-
cause s2 is the square of a normally distributed random variable, it is no longer nor-
mally distributed, but follows a different distribution, the so-called χ2-distribution.

Definition 8.1. The χ2-distribution with k degrees of freedom is the distribution
of a sum of the squares of k independent standard normal random variables. In
other words, if X1, X2, . . . , Xk are independent, standard normal random variables,
then the sum of their squares,

Q =
k∑
i=1

X2
i

is distributed according to the χ2-distribution with k degrees of freedom,

Q ∼ χ2(k).



8.3. THE χ2-DISTRIBUTION AND χ2-TESTS 101

Thus, the χ2-distribution has one parameter, the number of degrees of freedom,
k, which is exactly the number of independent random variables. Note that the
χ2-distribution in a way requires a “normalized” distribution, more precisely, it
requires that the variance of the underlying normal distribution, σ2 = 1, i.e.,
it is only a χ2-distribution for standard normally distributed random variables,
Xi ∼ N (0, 1).

Let us derive the probability density function, f(y), for the χ2(k = 1) dis-
tribution, where y = x2. We begin with a standard normal random variable,
X ∼ N (0, 1). The probability density function of X is

p(x) =
1√
2π

exp

(
−x2

2

)
.

Then the probability density function, p(y = x2), is given by

p(y) =
d

dy
P (X2 ≤ y) =

d

dy
P (−√y ≤ X ≤ √y),

=
d

dy

1√
2π

∫ √y
−√y

e−u
2/2du =

2√
2π

d

dy

∫ √y
0

e−u
2/2du,

=
2√
2π
e−
√
y2/2 d

dy

√
y =

2√
2π
e−y/2

1

2
√
y
,

p(y) =
e−y/2√

2πy
=

1√
2π
y

1
2
−1e−y/2, (8.6)

where the more complicated last expression is shown in preparation of the more
general case with k degrees of freedom. Remember that Γ(1/2) =

√
π. Then, in

preparation of the more general χ2(k),

p(y) =
1√

2Γ(1/2)
y

1
2
−1e−y/2. (8.7)

Wikipedia1 gives an interesting and rather intuitive derivation of the probabil-
ity distribution function for χ2(k). They consider the k samples xi to be a single
point in a k-dimensional (Euclidean) space. The χ2 distribution of k degrees of
freedom will then be given by

P (Q)dQ =

∫
ν

k∏
i=1

(p(xi)dxi) =

∫
ν

e−(x2i +x22+...+x2k)/2

(2π)k/2
dx1dx2 . . . dxn.

1https://en.wikipedia.org/wiki/Proofs_related_to_chi-squared_distribution

https://en.wikipedia.org/wiki/Proofs_related_to_chi-squared_distribution
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Here ν is the volume of the spherical shell spanned by Q(x) in k space, which in
turn is a k − 1 dimensional entity and for which we have

Q =
k∑
i=1

x2
i .

This is a sphere with radius R =
√
Q in k-dimensional space. Since this radius is

a constant, we can remove it from inside the integral and are left with

P (Q)dQ =
e−Q/2

(2π)k/2

∫
ν

dx1dx2 . . . dxk

The integral is now nothing else than the area of the sphere in k-dimensional space
times its thickness, dR,

dR =
dQ

2
√
Q
.

The area of a k − 1-sphere is given by

A =
2Rk−1πk/2

Γ(k/2)
,

which you can easily verify for k = 2 and k = 3 and then use induction to prove
it for k → k + 1. So

P (Q)dQ =
e−Q/2

(2π)k/2
· 2Rk−1πk/2

Γ(k/2)

dQ

2
√
Q

=
1

2k/2Γ(k/2)
Qk/2−1e−Q/2dQ, (8.8)

where Γ(k/2) is the Γ-function. Equation 8.8 translates to eq. 8.7 in the case of
k = 1.

Summary 8.2. The χ2 distribution with k degrees of freedom is the dis-
tribution of the sum of squares of k standard normally distributed random
variables, x1, x2, . . . , xk. With Q =

∑k
i=1 x

2
i , the probability density function

of the χ2(k)-distribution is given by

P (Q)dQ =
1

2k/2Γ(k/2)
Qk/2−1e−Q/2dQ.

Plots of some χ2(k) distributions are shown in Fig. 8.2. The mean of the
χ2-distribution is µ = k, the variance, σ2 = 2k.

To come back to our original question, the variance of the population or of a
sample is a χ2-distributed random variable.

As you can see in Fig. 8.2, the χ2 distribution is highly skewed. As k → ∞,
the χ2 distribution tends towards a normal distribution. It does so very slowly
beacuse it is so highly skewed.
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Figure 8.2: Plots of χ2(k) for k = 1, 2, 3, 4, 6, 8, 10.

Example 8.5. Let us investigate the fairness of our die once again. Our null
hypothesis H0 is that the die is fair, i.e., that all eyes have the same probability.
We have thrown it 60 times and observed the following distribution:

eyes: 1 2 3 4 5 6
expected (µi): 10 10 10 10 10 10
frequency (xi): 4 11 10 4 11 20

To decide whether the die is fair, we compare the measurements with their expec-
tation values using a χ2 test. To do so we compute

χ2 =
6∑
i=1

(xi − µi)2

µi

=
(4− 10)2 + (11− 10)2 + (10− 10)2 + (4− 10)2 + (11− 10)2 + (20− 10)2

10
= 17.4

Let us choose a significance level of α = 5%. The test-statistic, the χ2 distribution
has f = 6 − 1 = 5 degrees of freedom. We compute the critical value for a
χ2(5)-distribution at 1− α using
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1− α f = 1 f = 2 f = 3 f = 4 f = 5 f = 10
0.68 0.989 2.279 3.506 4.695 5.861 11.499
0.80 1.642 3.219 4.642 5.989 7.289 13.442
0.90 2.706 4.605 6.251 7.779 9.236 15.987
0.95 3.841 5.991 7.815 9.488 11.070 18.307
0.975 5.024 7.378 9.348 11.143 12.833 20.483
0.99 6.635 9.210 11.345 13.277 15.086 23.209

Table 8.2: Critical values for the one-sided χ2 distribution. Example: The critical
value for a χ2 distribution with f = 3 degrees of freedom at a significance level of
1− α = 0.95 is 7.815.

In : from sc ipy . s t a t s import ch i2
In : ch i2 . ppf ( 0 . 9 5 , 5 )
Out : 11 .07

We find that the measured χ2 value exceeds the critical value at a p = 1−α = 95%
significance level, so we can reject our null hypothesis at the 95% confidence level.
In fact, Tab. 8.2 shows that the critical levels for 97.5% and 99% are 12.833 and
15.086 which tells us that we can reject the null hypothesis at even higher confi-
dence levels of 97.5% and 99%. We cannot, however, reject it at 99.9% confidence
level, because the corresponding critical value is 20.52, as you can easily compute
yourself.

How to calculate the degrees of freedom: In the previous example we threw
the die 60 times and counted how often we observed each number of eyes. There
are 6 eyes on a die, so why did we use f = 5? Well, we know that we threw the
die 60 times. If we also know how often we had 1, 2, 3, 4, and 5 eyes, then we also
know how often we had 6 eyes even without counting the number of times we had
6 eyes. So the number of degrees of freedom is reduced by one, from 6 to 5.

Example 8.6. Let us come back to our coffee machine company2. We have re-
cently changed one of the steps in manufacturing in one of the two assembly lines
and we wish to find out whether the quality of the machines has improved. We
also wonder whether one of the machines in line 2 produces more faulty parts than
in line 1. We again carefully collect and analyze all complaints which we have
received and categorize them into the following categories:

2We should give it a name!
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line 1 line 2 Total
before change 10 13 23
after change 7 11 18
Total 17 24 41

We then go through the following steps:

1. Define the null hypothesis, H0: There is no difference after the change.
2. Calculate the expectation values: This is slightly more complicated than for

the previous example 8.5. We have a total of 41 complaints of which 23
(18) are before (after) and 17 (24) in line 1 (line 2). How do we determine
the expectation value? Consider the expected value for line 1 before the
change. We have a total of 17 complaints for line 1. Since the null hypothesis
is that there is no difference, we would expect the number of complaints
to be equally distributed before and after the change. Similarly, if line 1
and line 2 show the same quality, we’d expect the same number in both
lines (1 & 2) too. So we multiply 17 × 23 and divide by the total number
of complaints to obtain the expectation value for line1 before the change,
E [line1, before] = 17 × 23/41 = 9.54. Similarly, we obtain the expectation
values shown in table 8.3.

3. Next, we calculate the χ2 of these data and expectation values

χ2 =
∑
i

(xi − µi)2

µi

=
(10− 9.54)2

9.54
+

(13− 13.46)2

13.46
+

(7− 7.46)2

7.46
+

(11− 10.54)2

10.54
= 0.086

4. Finally, having decided on the conventional α = 0.05, we compute the critical
value and compare it to the calculated χ2. The number of degrees of freedom
is f = 1 and the critical value is 3.84. Here the number of degrees of freedom
is calculated as the product of the number of columns minus one and the
number of rows minus one, i.e., k = (ncol− 1)(nrow− 1) = (2− 1)(2− 1) = 1.

So we conclude that we cannot reject the null hypothesis, i.e., there is no significant
improvement in quality after the change. This result is also valid for our other
question, whether the machine in line 2 may produce more faulty parts than the
one in line 1.

The Addition theorem for the χ2 distribution states that if you have
X1, X2, . . . , Xn independent χ2-distributed random variables with k1, k2, . . . , kn de-
grees of freedom, then their sum, Y =

∑n
i1
xi, is χ2(k1 + k2 + . . . kn) distributed.

In other words, χ2(n) = χ2(n− 1) + χ2(1).
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line 1 line 2 Total
before change 9.54 13.46 23
after change 7.46 10.54 18
Total 17 24 41

Table 8.3: Expectation values for example 8.6.

8.4 The t-Distribution

In the previous section 8.3 we showed that the variance of a standard normally
distributed random variable, X, is distributed as a χ2 distribution. In other words,
the square of a standard normally distributed random variable is no longer dis-
tributed as a normal distribution, but as a χ2 distribution.

Now consider what we are doing when we try to estimate the mean, µ, of a
population with variance σ2 by taking a sample from it. We know that the random
variable

z =
x̄− µ
σ/
√
n
, where x̄ =

1

n

n∑
i=1

xi

is normally distributed. The problem is, however, that we don’t know the variance,
σ2! Well, it is obvious what to do, isn’t it? We simply use the empirical variance,
s2, instead of σ2. We thus have a new random variable

t =
x̄− µ
s/
√
n
, where s2 =

1

n− 1

n∑
i=1

(xi − x̄)2. (8.9)

Note that the numerator is normally distributed. How is the denominator dis-
tributed? This is a question which requires some thought.

Consider again a standard normally distributed random variable, e.g.,

n∑
i=1

(
xi − µ
σ

)
∼ N (0, 1).

As we saw a moment ago, its square is χ2(n)-distributed. Let’s write this in a
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slightly more complicated way. . .

W =
n∑
i=1

(
xi − µ
σ

)2

∼ χ2(n),

=
n∑
i=1

(
(xi − x̄) + (x̄− µ)

σ

)2

,

=
n∑
i=1

(
xi − x̄
σ

)2

+
n∑
i=1

(
x̄− µ
σ

)2

+ 2

(
x̄− µ
σ

) n∑
i=1

(xi − x̄) ,

=
n∑
i=1

(
xi − x̄
σ

)2

+ n

(
x̄− µ
σ

)2

,

=
(n− 1)s2

σ2
+ n

(
x̄− µ
σ

)2

. (8.10)

The second term on the right-hand side of eq. 8.10 is(
x̄− µ
σ/
√
n

)2

∼ χ2(1),

i.e., is χ2(1)-distributed. The addition theorem of the χ2 distribution says that if
you have X1, X2, . . . , Xn independent χ2-distributed random variables with k1, k2,
. . . , kn degrees of freedom, then their sum, Y =

∑n
i1
xi, is χ2(k1 + k2 + . . . kn)

distributed. In other words, χ2(n) = χ2(n− 1) +χ2(1). Because the left-hand side
is χ2(n) distributed and the second term on the right-hand side is χ2(1) distributed,
this tells us that the first term on the right-hand side must be χ2(n−1) distributed,

u =
(n− 1)s2

σ2
∼ χ2(n− 1).

Now consider again our random variable t = (x̄− µ)/(s/
√
n).

t =
x̄− µ
s/
√
n
,

=

x̄−µ
σ/
√
n√
s2

σ2

=

x̄−µ
σ/
√
n√

(n−1)s2

σ2(n−1)

,

t =
z√

u/(n− 1)
, (8.11)

where z = (x̄ − µ)/(σ/
√
n). Thus, our new random variable is the ratio of a

standard normally distributed (N (0, 1)) random variable and the square root of
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a χ2(n − 1)-distributed one. Their distribution functions, G(z) and χ2
n−1(u) are

given by

G(z) =
1√
2π

exp
(
−z2/2

)
and χ2

n−1(u) =
u((n−1)/2)−1e−u/2

2(n−1)/2Γ((n− 1)/2)
. (8.12)

The probability function, fGχ2(t), which describes the distribution of the new
random variable, t = z/

√
u/(n− 1) of eq. 8.9 is then

fGχ2
n−1

(t) =

∫ ∫
δ

(
t− z√

u/(n− 1)

)
G(z)χ2

n−1(u)dzdu, (8.13)

where δ(t − z/
√
u/(n− 1)) is the usual Dirac δ-function. Now I fear that the

following calculations will be a little painful and I excuse myself for that. First we
write the integral in eq. 8.13 in its full glory before we start to simplify.

fGχ2
n−1

(t) =
1√
2π

∫ ∫
δ

(
t− z√

u/(n− 1)

)
e−z

2/2 u((n−1)/2)−1e−u/2

2(n−1)/2Γ((n− 1)/2)
dzdu.

(8.14)
We now introduce a new variable, t′ = z/

√
u/(n− 1) with which z =

√
u/(n− 1)t′.

Then
dt′

dz
=

√
n− 1

u
⇔ dz =

√
u

n− 1
dt′,

with which eq. 8.14 turns into

fGχ2
n−1

(t) =
1√

2π(n− 1)
· 1

2(n−1)/2Γ((n− 1)/2)

∫ √
ue−

t2

2
u

n−1u(n−1)/2−1e−u/2du.

Yes, you see that we have gotten rid of one integral and are now left with one more
to perform. Let us simplify the integrand

fGχ2(t) =
1√

2π(n− 1)
· 1

2(n−1)/2Γ((n− 1)/2)

∫
u

n−2
2 e−

u
2

(1+ t2

n−1
)du. (8.15)

We again introduce a new variable,

x
.
=

(
1 +

t2

n− 1

)
u

2
with which

dx

du
=

(
1 +

t2

n− 1

)
1

2
,

and
u =

2x

1 + t2

n−1

and du =
2dx

1 + t2

n−1
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with which eq. 8.15 turns into

fGχ2
n−1

(t) =
1√

2π(n− 1)
· 1

2(n−1)/2Γ((n− 1)/2)
· 2

1 + t2

n−1

∫ (
2x

1 + t2

n−1

)n−2
2

e−xdx,

=

(
1 + t2

n−1

)−(n/2)

√
π(n− 1)Γ

(
n−1

2

) ∫ x
n
2
−1e−xdx. (8.16)

Now the integral

Γ(α) =

∫ ∞
0

xα−1e−xdx,

is the Γ function and so we obtain our final result,

fGχ2
n−1

(t) =

(
1 + t2

n−1

)−(n/2)

Γ
(
n
2

)√
π(n− 1)Γ

(
n−1

2

) . (8.17)

This distribution is called Student’s t-distribution for n− 1 degrees of free-
dom. It is more convenient to write it as a distribution with n degrees of freedom,

fn(t) =

(
1 + t2

n

)−(n+1)/2

Γ
(
n+1

2

)
√
πnΓ

(
n
2

) . (8.18)

Summary 8.3. Student’s t-distribution for n degrees of freedom is
given by

fn(t) =

(
1 + t2

n

)−(n+1)/2

Γ
(
n+1

2

)
√
πnΓ

(
n
2

) where t =
x̄− µ
s/
√
n

and describes the distribution of the mean of a sample, x̄ around the mean
of the population, µ, if the variance of the population, σ2, is not known
but sampled from it using the empirical variance, s2. Figure 8.3 shows the
t-distribution.

A graph of Student’s t-distributions with various degrees of freedom is shown in
Fig. 8.3 where it is also compared with the standard normal distribution (shown as
a dashed line). The t-distribution has stronger tails than the normal distribution,
thus it allows for larger deviation from “normality”.

In order to find the fraction of the t random variable population which lies in
a region of the distribution (i.e., to find a certain quantile of the distribution), we
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Figure 8.3: Graph of the t-distribution for various degrees of freedom (solid lines)
and the standard normal distribution (dashed line).

need to compute the cumulative distribution function. We give it here without
proof (Uff! What a relief!).

Fn(t) =

∫ t

−∞
fn(u)du = 1− 1

2
Ix(t)

(
n

2
,
1

2

)
, where x(t) =

n

t2 + n
, (8.19)

and Ix is the regularized incomplete beta function,

Ix(a, b) =
B(x; a, b)

B(a, b)
,

and

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt, and B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt, (8.20)

are the beta function and incomplete beta function, respectively. Needless to say,
we don’t do these calculations on the back of an envelope. Fortunately, scipy
provides this functionality.

In : from sc ipy . s t a t s import t
In : t . cd f (x , n , loc , s c a l e )
In : t . ppf (x , n , loc , s c a l e )
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where x and n are the fraction and degrees of freedom of the distribution. loc
and scale allow us to shift and scale the distribution. ppf is the inverse of the
cumulative distribution function.

Example 8.7. Consider again our coffee machine company for which we have
decided to offer a delivery service for high-quality coffee beans to our customers.
One of the obvious things which customers do is to weigh the bag of coffee to check
whether it contains the 1 kg which we guarantee it should. We weigh 25 out of the
1000 bags and obtain the x̄ = 998 g for the sample mean weight and s = 5.3 g for
the standard error of the mean. It seems that we need to fill the bags with a little
more than 1 kg to be sure that we won’t get too many complaints. But by how
much? We want to be sure that no more than 1% of the bags is filled with less
than 1 kg of coffee. If we knew the true variance of all the coffee bags, we could
use the normal z-critical value, however we don’t know σ2, but only s2. Because in
this situation we need to use the t distribution, we compute the inverse cumulative
distribution function or percent point function (ppf) for Student’s t for n = 25− 1
degrees of freedom and a confidence level of α = 1%.

In : from sc ipy . s t a t s import t
In : t . ppf ( 0 . 0 1 , 2 4 )
Out : 2 .49

So we need to multiply the empirical standard deviation by 2.49 and add 2 + 2.49 ·
5.3 = 15 g of coffee to each bag to be sure that we won’t have more than α = 1%
underfilled bags. While this looks like a large number to use, you can appreciate
that it is needed when you consider the large tails of the t distribution which arise
because we don’t know the true variance of the population. Had we chosen a larger
value for α, tα,n−1 would have been smaller.

Note that in example 8.7 we used tα,n−1 and not tα/2,n−1 as one often sees.
This is because we’re performing a one-sided hypothesis test! We are only worried
about underfilling the coffee bags. If we are considering a two-sided test, we need
to use tα/2,n−1.
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Summary 8.4. Using the definition (eq. 8.9) of the variable t = (x̄ −
µ)/(s/

√
n) we can give the 1 − α confidence interval for the sample mean,

x̄, and the population mean, µ, to agree within ±tα/2,n−1s/
√
n. Given the

mean, x̄, and empirical standard deviation, s, of a sample, x1, x2, . . . , xn, of
a population, one reports a 1 − α confidence interval for the mean, µ, of
that population as follows:

µ = x̄± tα/2,n−1
s√
n
, (8.21)

as can be seen by solving eq. 8.9 for µ. On the other hand, the 1 − α
confidence interval for a new measurement, or the 1−α confidence predic-
tion interval, is obtained by quadratically adding the standard error of a
measurement to the last term in eq. 8.21.

µ = x̄± tα/2,n−1s

√
1 +

1

n
. (8.22)

Example 8.8. Consider a sample x1, x2, . . . , xn of a population with unknown
mean µ and variance σ2. We give the 95% confidence interval for the population
mean,

µ = x̄± tα/2,n−1
s√
n
,

where α = 0.05.

8.5 The F -Distribution

This distribution is named after Ronald Fisher, who developed it together with
George Snedecor around 1920 for a statistical test whether the variances of two
distributions are the same. To understand this test we consider two independent
normally distributed random variables, X1 and X2 with a common variance, σ2

1 =
σ2

2 = σ2. Now consider the two samples, x1,1, x1,2, . . . , x1,n1 and x2,1, x2,2, . . . , x2,n2

which are drawn from the random variables, X1 and X2. They have sample means
µ1, µ2 and empirical variances s2

1 and s2
2. Then the quotient

q =
s2

1

s2
2

is distributed according to the F -distribution with n1 − 1 and n2 − 1 degrees of
freedom. The degrees of freedom are often called numerator and denominator
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Figure 8.4: Probability density function (pdf) for the F -distribution.

degrees of freedom or dfn = n1 and dfd = n2. The probability density function of
the F -distribution is given without derivation here,

p(q) =
n

n1
2

1 n
n2
2

2

qB
(
n1

2
, n2

2

) · q
n1
2

(n2 + n1q)(n1+n2)/2
, (8.23)

where B(a, b) is the beta function given in eq. 8.20. The F -distribution is also
provided by scipy , plots of its probability density function, p(q), for different n1

and n2 are shown in Fig. 8.4.

In : from sc ipy . s t a t s import f
In : f . pdf ( 1 . , 1 0 , 1 5 )
Out : 0 .677
In : f . ppf ( 0 . 05 , 10 , 15 )
Out : 0 .351

Example 8.9. Consider two independent normally distributed random variables,
X1 and X2 with unknown means µ1 and µ2 and variances σ2

1 and σ2
2. We wish to

test whether the two random variables have the same variance, i.e., we test for the
null hypothesis

H0 : σ2
1 = σ2

2.
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We compute the quotient, the ratio

q = s2
1/s

2
2

where s1 and s2 are the empirical variances of the samples x1,1, x1,2, . . . , x1,n1 and
x2,1, x2,2, . . . , x2,n2 . It is the test statistic for Fisher’s F -test. We choose our stan-
dard significance level, α = 5%, and the alternative hypothesis

H1 : σ1 6= σ2

We accept the null hypothesis, H0, if

F (α/2, n1, n2) < q < F (1− α/2, n1, n2),

where F (α/2, n1, n2) is Fisher’s F .

Example 8.10. Consider the following two samples,
sample 1 = [2.499, 2.575, 2.758, 3.204, 2.221, 1.714, 3.004, 2.824, 2.473, 2.524]
sample 2 = [3.699, 3.590, 3.366, 2.412, 3.701, 1.255, 1.990]
which have variances s1 = 0.173 and s2 = 0.956, their quotient is q = 0.1814. We
compute the critical values for the chosen significance level, α = 5%.

In : from sc ipy . s t a t s import f
In : n1 = 10 ; n2 = 7 ; alpha = 0.05
In : c r i t 1 = f . ppf ( alpha /2 ,n1−1,n2−1)
In : c r i t 2 = f . ppf (1.− alpha /2 ,n1−1,n2−1)
In : p r i n t ( c r i t 1 , c r i t 2 )
Out : 0 .2315 , 5 .5234

The quotient lies outside the critical values for the significance level of 5%,

q < 0.2315 < 5.5234,

so we can say that we reject the null hypothesis that σ1 = σ2 at the 5% significance
level. In fact, I generated the two samples with different variances, σ1 = 1.0 and
σ2 = 1.5, but a common mean of µ1 = µ2 = µ = 3.0.

Just to check that we did indeed compute a two-sided test for α = 5%, we
compute the probability values for the above critical values:

In : p r i n t ( ’ p r obab i l i t y ␣ va lue s ␣ f o r ␣ c r i t i c a l ␣ va lue s ␣ are : ’ )
In : p r i n t ( f . cd f ( c r i t 1 , n1−1,n2−1) , f . cd f ( c r i t 2 , n1−1,n2−1))
Out : 0 .025 0 .975
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Had we chosen a different significance level, say, α = 1%, we would have found
different critical values, namely c1 = 0.142 and c2 = 10.39, and c1 < q < c2, so we
would not have rejected the null hypothesis at this significance level. In this case,
we could have determined the average or “pooled” sample variance,

s2
pooled

.
=
s2

1(n1 − 1) + s2
2(n2 − 1)

n1 + n2 − 2
. (8.24)

8.6 Do two Populations Have the Same Mean?

Example 8.11. We have had enough. That machine in line two of our manufac-
turing hall has indeed been producing faulty parts and we have decided to replace
it. As there has been a lot of progress in machine technology, we are thinking of
buying a highly capable one and now want to verify that it does indeed produce
better parts. To do so, we compare a sample x1,1, x1,2, . . . , x1,n1 from the corre-
sponding (and older) machine in line 1 which has been producing good parts with
a sample x2,1, x2,2, . . . , x2,n2 from the new machine.

The example just described is fairly general. Note that the sample sizes n1 and
n2 are not necessarily the same, their means, x̄1 and x̄2, are (probably) different,
and their variances, s2

1 and s2
2, are also not necessarily the same. The latter can be

tested using the F -test which we just discussed a moment ago in sec. 8.5. We may
also want to introduce a threshold, d .

= µ1 − µ2, into the problem, for instance
because the new machine is expensive and the parts need to be at least d better
to make the new machine worth while. Here µi is the mean of population i, not
of the corresponding sample! After all, we don’t want to be fooled into buying an
expensive machine based on a sample which by chance was not a good one.

So how do we decide whether the two means, x̄1 and x̄2, are significantly
different? One obvious way of deciding that would be to ask by how many standard
deviations the two means differ. In fact, we should not use standard deviations,
but the standard error of the two means to compare them. Thus, the test to be
used to test for equal means is the two-sample t-test. We define our null and
alternative hypothesis, as well as the test statistic, etc., in the following table.
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H0 : µ1 = µ2

H1 : µ1 6= µ2

H2 : µ1 < µ2

H3 : µ1 > µ2

Test statistic: T = x̄1−x̄2√
s21/n1+s22/n2

.

Significance level: α

Degrees of freedom: ν =

(
s21
n1

+
s22
n2

)2

(
s21
n1

)2
1

n1−1
+

(
s22
n2

)2
1

n2−1

where the degrees of freedom need to be rounded to the next smaller integer.
Often, one assumes the two variances to be equal (as a rule of thumb, when they
are within a factor of two from each other). In this case, the test statistic is
changed to

T =
x̄1 − x̄2

sp
√

1/n1 + 1/n2

, where s2
p =

s2
1(n1 − 1) + s2

2(n2 − 1)

n1 + n2 − 2

is the pooled variance (eq. 8.24). In this case

ν = n1 + n2 − 2.

We define the critical region, i.e., where we reject the null hypothesis if

|T | > t1−α/2,ν , (8.25)

where t1−α/2,ν is the critical value of the t-distribution with ν degrees of freedom.

Example 8.12. We believe that the time the machine in line 2 takes to manufac-
ture a part is longer than machine 1 takes. We have the following samples:

d1 = [29.943, 28.657, 29.478, 32.860, 28.147, 30.291, 29.945, 29.556]

d2 = [37.113, 35.001, 41.744, 29.464, 42.021, 42.207, 47.827]

We compute the relevant quantities:

quantity value
x̄1 29.8597
x̄2 39.3394
s2

1 1.974
s2

2 35.756
T -4.0966
t1−α/2,ν 3.5768
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where we have computed the critical value for a significance level of α = 1%
because the machine is expensive and we don’t want to make a bad decision. Note
that the two means clearly look different, the variance of the first sample also looks
small and we are inclined to believe that the two samples are indeed different. The
problem lies with the second sample and its large variance! Nevertheless, the test
statistic is T = −4.0966 indicating that µ1 < µ2, and the critical value from the
t-distribution is t1−α/2,ν = 3.5768. Thus, we may state that we reject the null
hypothesis, H0 : µ1 = µ2, at the 1% significance level. But in fact, we can do more
than that. We can also test for the alternative hypotheses, H2 : µ1 < µ2 and
H3 : µ1 > µ2. These are now no longer two-sided hypothesis test, but one sided
ones (see Fig. 8.1).

alternative hypothesis rejection region critical value
H1 : µ1 6= µ2 |T | > t1−α/2,ν 3.5768
H2 : µ1 > µ2 T > t1−α,ν 3.0520
H3 : µ1 < µ2 T < tα,ν -3.0520

The test statistic T = −4.0966 < −3.0520 and so we may state at the 1%
confidence level that µ1 < µ2. Indeed, the samples were generated using normal
distributions with means µ1 = 30 and µ2 = 38 with standard deviations σ1 = 1.6
and σ2 = 5.4. The critical value is computed using the following code snippet.

In : t . ppf (1.− alpha , n)

Example 8.13. Press et al. (1989) discuss a final interesting example for the t-
test, the case of paired samples. This test is useful if you suspect that part of the
variance in both samples is due to a correlation between the samples. They give
the example of a committee of of 10 people evaluating two candidates. If some
committee members generally give better marks than others, then there will be
an additional spread or variance in the data which may mask a difference in the
means of the two candidates. Press et al. (1989) give the following test statistic,

t =
x̄1 − x̄2

sD
, where sD =

√
Var [S1] + Var [S2]− 2 Covemp [S1, S2]

n
,

where n is the number of paired data points, Si are the samples of candidate i,
and

Covemp [S1, S2] =
1

n− 1

n∑
i=1

(x1,i − x̄1)(x2,i − x̄2),

is the empirical covariance of the two samples (see eq. 7.3 for the definition). The
test statistic, t, is then distributed according to Student’s t-distribution and we
can use the usual t test.
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8.7 ANOVA
ANalysis Of VAriances (ANOVA) is a nifty way of comparing the means of many
samples which is conceptually surprisingly simple. Given k random variables, Xi,
with expected values µ1, µ2, . . . , µk, and a common variance, σ2, we take ni samples
of each of these Xi. For each sample, we have a sample mean, x̄i and empirical
variance, s2

i .
ANOVA tests the null hypothesis H0 : µ1 = µ2 = . . . = µk and assumes that

the individual samples are normally distributed. The basic trick of ANOVA is to
estimate the common variance, σ2 in two independent ways. The first is to add
the individual sample variances,

s2
tot =

1

n− k

k∑
i=1

(ni − 1)s2
i . (8.26)

Note that this is exactly the way we would add errors quadratically. The sec-
ond estimate of the variance is to use the individual sample means to compute a
common variance,

s2
comm =

1

k − 1

k∑
i=1

ni(x̄i − x̄)2, (8.27)

where x̄ is the mean of all samples. Obviously, s2
tot will be a good estimate of σ2

even if the null hypothesis is not true, whereas s2
comm only estimates σ2 correctly

when H0 is true. If H0 is not true, s2
comm estimates σ2 too large.

ANOVA uses the test statistic

q =
s2

comm

s2
tot

(8.28)

which - because both variances are normally distributed - is described by Fisher’s
F -distribution. Thus, we can use Fisher’s test to assess whether our null hypothesis
must be rejected or not.

Example 8.14. I created three normally distributed random samples with differ-
ent lengths, but equal variances, σi, and equal expectation values, µi. They are
given in the following table.

sample sample values mean variance
sample 1 [10.588 7.474 13.268 10.030

5.007 10.294] 9.443 6.761
sample 2 [7.984 12.779 9.820 8.592

12.558 6.037 7.388 9.150] 9.288 4.944
sample 3 [11.126 7.618 12.251 9.838

7.722 7.268 10.080 8.943
11.987 8.233] 9.507 3.044
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We can now compute s2
tot and s2

comm and the other relevant quantities. The
mean of the three sample means is x̄ = (1/3)(x̄1 + x̄2 + x̄3) = 9.413, s2

tot = 4.562,
and s2

comm = 0.109. Thus, the test statistic t = s2
comm/s

2
tot = 0.02379. Fisher’s

distribution is F (1− α, 2, n1 + n2 + n3 − 3) = 3.467 which is larger than the test
statistic, and so we can’t reject the null hypothesis. We have used our standard
α = 5% significance level.

If, on the other hand, we add 3.5 to sample 1, we get the following quantities:
x̄ = (1/3)(x̄1 + x̄2 + x̄3) = 10.246, s2

tot = 4.562, and s2
comm = 15.046. Thus, the test

statistic t = s2
comm/s

2
tot = 4.234. Fisher’s distribution is F (1− α, 2, n1 + n2 + n3 −

3) = 3.467 which is less than the test statistic, and so we reject the null hypothesis.

8.8 Quantile-Quantile Plots
As we saw in Fig. 7.3, is is important to plot the data which one is looking at. To
repeat the lesson stated there: Plot your data! But how should we do this in the
context of hypothesis testing? This is what this section about quantile-quantile
plots is about. We will see how to plot data to understand whether our data fulfill
the assumptions which we’re making.

Fig. 8.5 shows two plots which illustrate a way to check whether our sample
data were drawn from a normal distribution. The data in the left-hand panel were,
those in the right-hand panel weren’t.
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Figure 8.5: “Normality plots” to check whether data are distributed according to
a normal distribution. In the left-hand panel, we see data which were generated
using a normal distribution, the right-hand panel shows data which was generated
as the sum of two normal distributions with different widths.

Such plots are known as probability plots and can be generated for any
probability function for which quantiles can be calculated. The procedure given
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by Filliben (1975) and Chambers et al. (1983) is as follows:

1. Sort your sample into an ascending order

2. Calculate the uniform order statistic medians, mi. Filliben (1975) gives a
simple algorithm

mi =


1−mn i = 1
(i− .3175)/(n+ .365) i = 2, 3, . . . , n− 1
(1/2)1/n i = n

(8.29)

(In other words, you start by computing mn = (1/2)1/n, the compute m1 =
1−mn, and then compute the mi in between using eq. 8.29.

3. Next compute the order statistic medians for the probability distribution
you believe is being sampled. This can be done using the .ppf method
for the distributions given by scipy . For a normal distribution, we’d use
norm.ppf(m,loc=mu,scale=sig).

4. Note that we have as many order statistic medians as data (sample) points.

5. Now plot your sorted data vs. the order statistic medians

In : s s = so r t ( sample )
In : m = [1 . −0 . 5∗∗ ( 1 . / n ) ]
In : f o r i in l i n s p a c e (2 , n−1,n−2):
In : m = append (m, ( i −0.3175)/(n+0.365))
In : m = append (m, 0 . 5 ∗ ∗ ( 1 . / n ) )
In : pp = norm . ppf (m, l o c=mu, s c a l e=s i g )
In : f i g , ax = subp lo t s ( )
In : ax . p l o t (pp , ss , ’ ko ’ , l a b e l=’Data ’ )
In : ax . p l o t (pp , pp , ’ k− ’ )
In : show ( )

In the code snippet above, we used a normal distribution centered around µ
with standard deviation σ. We could also have used a Weibull distribution, or any
other distribution for which an inverse exists (so you can compute the .ppf).

You can also plot two samples against each other to check whether they come
from the same distribution. In this case, the probability plot is no longer called
a probability plot because you are no longer comparing your sample data with
a probability distribution. Such plots are called quantile-quantile plots or Q-
Q plots and compare two (unknown) distributions, i.e., your samples, with each
other. The two samples do not need to have the same length.

The recipe to generate a Q-Q plot is the following:
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1. Sort both samples into ascending order.

2. Define the uniform order statistic medians, mi, as defined in eq. 8.29 for
both data sets and the number of quantiles which you wich to plot. In other
words, you generate three different sets of mis.

3. Define up to two interpolation functions which allow you to interpolate the
two sorted samples for the quantiles which you wish to plot.

4. Now plot the two interpolating functions against each other.

If the two data sets have the same length, you can simply plot them against
each other. An example of a q-q plot is shown in Fig. 8.6, the code is shown in
the listing below.

from pylab import ∗
from sc ipy . s t a t s import norm , t
from sc ipy . i n t e r p o l a t e import inte rp1d
from numpy . random import randn
from numpy import ∗

n1 = 75
n2 = 58
s i g 1 = 3 .
s i g 2 = 4 .5
mu1 = 12 .
mu2 = 25 .
cm = 3 .
sample1 = mu1 + s i g 1 ∗ randn ( n1 ) − cm∗ s i g 2 ∗ randn ( n1 )
sample2 = mu2 + s i g 1 ∗ randn ( n2 ) + cm∗ s i g 2 ∗ randn ( n2 )

s s1 = so r t ( sample1 )
s s2 = so r t ( sample2 )

n = 40
m = [1 . −0 . 5∗∗ ( 1 . / n ) ]
f o r i in l i n s p a c e (2 , n−1,n−2):

m = append (m, ( i −0.3175)/(n+0.365))
m = append (m, 0 . 5 ∗ ∗ ( 1 . / n ) )
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m1 = [1 . −0 . 5∗∗ ( 1 . / n1 ) ]
f o r i in l i n s p a c e (2 , n1−1,n1−2):

m1 = append (m1, ( i −0.3175)/( n1+0.365))
m1 = append (m1, 0 . 5 ∗ ∗ ( 1 . / n1 ) )

m2 = [1 . −0 . 5∗∗ ( 1 . / n2 ) ]
f o r i in l i n s p a c e (2 , n2−1,n2−2):

m2 = append (m2, ( i −0.3175)/( n2+0.365))
m2 = append (m2, 0 . 5 ∗ ∗ ( 1 . / n2 ) )

f 1 = inte rp1d (m1, s s1 )
f 2 = inte rp1d (m2, s s2 )

f i g , ax = subp lo t s ( )
ax . tick_params ( ax i s=’ both ’ , l a b e l s i z e =14)
ax . s e t_x labe l ( r ’ sample␣1␣ quan t i l e s ’ , f o n t s i z e =16)
ax . s e t_y labe l ( r ’ sample␣2␣ quan t i l e s ’ , f o n t s i z e =16)
ax . p l o t ( f 1 (m) , f 2 (m) , ’ ko ’ , l a b e l=’Data ’ )
ax . p l o t ( f 1 (m) , f 1 (m) , ’ k− ’ )
s a v e f i g ( ’ q−q_plot . pdf ’ , bbox_inches=’ t i g h t ’ )
show ( )

8.9 Are two Distributions the Same?
In the previous section we saw how to plot data so as to get an idea about whether
data could originate from a certain distribution. Q − Q-plots or normality plots
are good tools to decide. But they do not offer a statistic which allows us to
decide whether two distributuons are different or the same. This deficiency is
overcome by the Kolmogorov-Smirnov test. Figure 8.7 explains how this test
works. We plot the cumulative distribution function of the two distributions which
are to be compared vs. their independent variables (the “x” variable). Then the
minimum value along the y axis is 0, the maximum is unity. One then computes
the maximum difference between the two cumulative distribution functions,

Dn1,n2 = max(|P1,n1 − P2,n2|).

This can be a little tricky if the two samples did not have the same length. In
Fig. 8.7 I have tried to solve this by using interpolated values for the two samples.
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Figure 8.6: An example for a q-q plot. The code which was used to generate it is
shown in the listing on page 122.

This introduces some ambiguity, but the results do not differ too much and the
effect on the final test described below is negligible. If it isn’t, you’re up to no
good. . .

We define the null hypothesis, H0, to be that the two distributions are the
same. It is rejected at significance level α if

Dn1,n2 > c(α)

√
n1 + n2

n1 · n2

, c(α) =

√
−1

2
ln
(α

2

)
.

In the examples plotted in Fig. 8.7 the difference is large and the null hypothesis
is rejected.

scipy offers an implementation of the Kolmogorov-Smirnov test which is sum-
marized below.

TO BE WRITTEN
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Figure 8.7: Example for a Kolmogorov-Smirnov test. The cumulative probability
distribution functions of two samples are plotted vs. their independent variables.
The Kolmogorov-Smirnov test statistic is the maximum of the difference of the
two cumulative probability distribution functions which is indicated by black lines.
This ought to be one single black line, but here I chose to illustrate the difficulty
in determining this difference when the two samples don’t have the same length.
See text for explanantion.



Chapter 9

Fitting a Model to the Data

We are often faced with the problem of determining the values of some parameters
of a physical model which underlies our measurements. The need for fitting a
model to the data to obtain the underlying parameters arises because we can often
not measure the parameters directly. We are in a different situation than when for
instance measuring the weights of bags of coffee, or the temperature of a cup of
tea. In our field, we often wish to know the exponent of an energy spectrum which
is typically assumed to be a power law in energy or energy per mass (velocity
squared in the non-relativistic limit), or more complicated, a power law with an
exponential roll over,

J = J0

(
E

m

)−γ
, or J = J0

(
E

m

)−γ
· e−E/E0 .

In the first case we need to estimate two parameters, J0 and γ, while in the second
we need to find three. Other examples are the energy calibration of a detector
which can be determined by using the Compton edges produced in the detector
by X-rays, or using conversion electrons, etc. In this case, we often only need to
fit a straight line to the data to obtain a calibration line or the corresponding
calibration factors, the gain and offset.

Note that we have already considered a special case of “fitting” when we dis-
cussed linear regression in section 7.4, as we will see in the first section 9.1. Before
we do so, consider Fig. 9.1. Its left-hand panel shows 20 different “data” sets which
were generated from the same underlying linear model function in different colors.
The linear model was simply

y(x) = 4.5 + x/2,

and (y) data were randomized with standard normally distributed errors, σ =
1. That means that we may imagine at each location xi a normal probability

125
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(b) Plot of the resulting fitted intercepts
vs. slopes.

Figure 9.1: Illustration that fitting can only give a probabilistic answer. Left-hand
panel: Using the same underlying model, 20 data sets were generated and fitted.
Each set and fit is plotted in the same color. Right-hand panel: Intercepts and
slopes resulting from the fits plotted vs. each other. The obvious anticorrelation is
discussed in the text.

distribution for data points from which one point is chosen. This is done for every
single location yielding 20 different sets of “data” points. Each “data” set was
then fitted with a linear function and the resulting fits are shown in the same
colors as the “data” set. This plot illustrates clearly that fitting can only give a
probabilistic answer. We can’t know the “true” underlying parameters, all we can
do is to approximate them and give an estimate how well we know them. We
can also give an estimate for how far the fitted “model” could lie from the “true”
underlying model. This is the subject of this chapter which makes heavy use of
Press et al. (1989) chapter 14 and of Richter (1995). I strongly recommend to also
read these sources.

The right-hand panel of Fig. 9.1 shows the intercepts and slopes resulting from
the linear fits of the left-hand panel plotted vs. each other. The obvious anti-
correlation can be understood the folowing way. Because the intercept and slope
are both positive, and the “center of gravity” of the data points lies - by construction
- at a higher y value than the intercepts, an increased fitted intercept must go with
a smaller slope for the model line to go through the cloud of data points. So despite
the fact that we would expect the slope and intercept to be independent of each
other they are not. Figure 9.2 shows histograms of the slopes and intercepts of 2000
such fits to artificial “data sets”. One can clearly see that they are distributed as
one would expect, as a Gaussian distribution centered on their expectation values
which we know in this case, because we invented them.
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(a) Distribution of fitted intercepts.
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(b) Distribution of fitted slopes.

Figure 9.2: Histograms of fitted intercepts and slopes show the expected Gaussian
distribution around their central values.

9.1 Linear Regression and/or Fitting a Straight
Line to Data

Let us begin with the simple example of fitting a straight line to data points. We
assume that we have n data points (xi, yi) to which we want to fit a linear model,

y(x) = a+ b · x,

with parameters a and b (for instance, offset and gain of our amplifier chain).
To keep matters simple we will - for the time being - assume that the values of
the independent variable, xi, are known exactly, i.e., have no uncertainties. This
could, for example, be the known energies of conversion electrons or X-rays. We
will, however, allow for errors, σi, in the values of the dependent variable, yi. In
the previous example, this would be the detector response to an energy deposit
by a conversion electron or an X-ray. Because we have only limited resolution and
other possible sources of errors, we allow for uncertainties in y(xi).

The most common way to fit a line y(x) = a + b · x to the data (xi, yi), is to
minimize the quantity

χ2(a, b) =
n∑
i=1

(
yi − y(xi)

σi

)2

=
n∑
i=1

(
yi − (a+ b · xi)

σi

)2

, (9.1)

which is called the “chi squared”. As we will see later on, this procedure results in
a maximum likelihood estimate for the two parameters, a and b if the errors σi are
normally distributed around the expectation value. If the errors are not normally
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distributed, this technique can often still yield good results, but does by no means
have to do so!

The minimization of χ2 is easily understood as minimizing the overall “distance”
of the model function (a straight line) to the data. In this case, the “distance” is
only in one dimension, the (dependent) y direction. We will see in section 9.8 how
to treat errors in both x and y.

We proceed to minimize χ2 as usual by setting the derivatives of χ2 with respect
to a and b to zero and solving for a and b because these parameters are the ones
which minimize the χ2.

0 =
∂χ2

∂a
= −2

n∑
i=1

yi − a− b · xi
σ2
i

, (9.2)

0 =
∂χ2

∂b
= −2

n∑
i=1

xi(yi − a− b · xi)
σ2
i

. (9.3)

Obviously, the factors (−2) are irrelevant for the minimization, and we are left
with a system of two linear equations for the two parameters, a and b,

a ·
n∑
i=1

1

σ2
i

+ b ·
n∑
i=1

xi
σ2
i

=
n∑
i=1

yi
σ2
i

,

a ·
n∑
i=1

xi
σ2
i

+ b ·
n∑
i=1

x2
i

σ2
i

=
n∑
i=1

xiyi
σ2
i

.

The sums

S
.
=

n∑
i=1

1

σ2
i

, Sx
.
=

n∑
i=1

xi
σ2
i

, Sy
.
=

n∑
i=1

yi
σ2
i

, Sxx
.
=

n∑
i=1

x2
i

σ2
i

, Sxy
.
=

n∑
i=1

xiyi
σ2
i

are easily computed from the data, in fact so easily that you can find linear regres-
sion on pocket calculators (should you still have one. . . ). Expressed with these
new variables, the system of equations looks even easier to solve,

a · S + b · Sx = Sy,

a · Sx + b · Sxx = Sxy,

and has the solution

a =
SxxSy − SxSxy

∆
, (9.4)

b =
SSxy − SxSy

∆
, where ∆ = SSxx − S2. (9.5)
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Let us look at these expressions in some more detail. We have assumed that we
have an underlying model, y(x) = a+ b · x, from which we drew a sample of data
points,

yi = a+ b · xi + εi, (9.6)

where the εi are the (unknown) errors in the measurements and are assumed
to be normally distributed. Our minimization is thus nothing else but the mini-
mization of

χ2 =
n∑
i=1

δ2
i =

n∑
i=1

(yi − a− b · xi)2 ,

by solving for the candidate parameters, a and b. There are two things to note
here. First, and more importantly, we are mixing up the “true” model parameteres
a and b from eq. 9.6 with the best-fit model paramters a and b which we are
attempting to find. This is sloppy, but I did not want to introcude new variables
which we will never use again at this point. Second, it is wortwhile to note that
we are now solving to minimize the sum of the squared residuals,

δi
.
= yi − y(xi) = yi − a− b · xi.

Let us again take the derivatives of χ2 with respect to a and b and set them equal
to zero in order to minimize,

0 =
∂χ2

∂a
= −2

n∑
i=1

(yi − a− b · xi) ,

0 =
∂χ2

∂b
= −2

n∑
i=1

xi (yi − a− b · xi) .

We solve for a,

0 =
n∑
i=1

yi −
n∑
i=1

a−
n∑
i=1

bxi,

n · a =
n∑
i=1

yi − b
n∑
i=1

xi,

n · a = n · ȳ − bn · x̄,
a = ȳ − b · x̄. (9.7)
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Solving for b,

0 =
n∑
i=1

xiyi −
n∑
i=1

axi −
n∑
i=1

bxixi,

b

n∑
i=1

xixi =
n∑
i=1

yixi − a
n∑
i=1

xi,

b

n∑
i=1

xixi =
n∑
i=1

yixi − (ȳ − b · x̄)
n∑
i=1

xi,

b

(
n∑
i=1

xixi − nx̄2

)
=

n∑
i=1

yixi − nx̄ȳ,

b

n∑
i=1

(xi − x̄)2 =
n∑
i=1

(yi − ȳ)(xi − x̄),

b =

∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2
, (9.8)

where you need to convince yourself that the second last line is correct1!
The reason for going through this seemingly complicated procedure was to

show you the following. Note that we can rewrite eq. 9.8 using eqs. 7.3 and 7.7 for
the empirical variance and covariance which we discussed in sections 7.2 and 7.4,

b =
Covemp [x, y]

Var [x]
. (9.9)

In fact, we can also write b using Pearson’s correlation coefficient, rxy (eq. 7.8),

b = rxy
sy
sx
, (9.10)

where sx and sy are the standard deviations of x and y. Note that these expressions
are identical to eqs. 9.4 and 9.5 which we found a moment ago. The slope and
intercept of the best-fit linear model are determined by the empirical covariance
of the data and by the data’s average properties. This can be shown even more
clearly by rewriting our model function, y(x) = a+ b ·x using the equations above
for a and b,

y(x) = a+ b · x,
y(x) = ȳ − b · x̄+ b · x = ȳ + b · (x− x̄),

y(x)− ȳ = rxy
sy
sx
· (x− x̄),

y(x)− ȳ
sy

= rxy ·
x− x̄
sx

, (9.11)

1It is. Show it by working backwards.
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which standardizes our function by centering it on (x̄, ȳ) and normalizes it by
dividing by the standard deviations. In this way, there is no intercept, and the
slope is given by Pearson’s correlation coefficient, eq. 7.8.

Example 9.1. Consider the following code snippets which together generate Fig-
ure 9.3.

from pylab import ∗
from sc ipy import s t a t s
from numpy import random

a = 4 . 5 ; b = 0 . 5 ; n = 16 ; e r r =0.5
random . seed (12345678) #to make t h i s r ep roduc ib l e !
x = l i n s p a c e (0 ,10 , n)
y = a + b∗x + e r r ∗random . random(n)

s l , i n t e r , r , p , e r r = s t a t s . l i n r e g r e s s (x , y )
x f = l i n s p a c e (min (x ) ,max(x ) , 10 )
y f = i n t e r+s l ∗ xf

f i g , ( ax1 , ax2 ) = subp lo t s (2 , 1 , sharex=True ,
gridspec_kw = { ’ he i ght_rat i o s ’ : [ 3 , 1 ] } )

ax1 . e r r o rba r (x , y , ye r r=e r r ∗ ones (n ) , fmt=’ ko ’ , lw=2, l a b e l=’ data ’ )
ax1 . p l o t ( xf , yf , ’ r− ’ , lw=2, l a b e l=’ f i t ’ )
ax2 . e r r o rba r (x , y−yf , ye r r=e r r ∗ ones (n ) , fmt=’ ko ’ , lw=2)
ax2 . p l o t ( ( xmin , xmax ) , ( 0 , 0 ) , ’ k− ’ , lw=2)
ax2 . yax i s . s e t_t i ck s ( ( −0 . 5 , 0 . , 0 . 5 ) )
f i g . subplots_adjust ( hspace=0)

It is a good idea to plot the residuals after one has performed a fit. They
can show whether there is a remaining dependence in the data which we did not
recognize previously.

9.2 Determining the Errors of the Fit Parameters
Figure 9.3 has a big problem. . .We have no idea how big the errors are of the
slope and the intercept. In fact, the errors in the residuals are nothing else but
the errors of the data with no indication of the additional error due to the fitting
uncertainty. So how can we determine the errors of the slope and of the intercept?
To understand the problem, imagine that we could have drawn another measure-
ment, y(xi), out of the many possible ones for each xi (see Fig. 9.1). Had this
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Figure 9.3: An example of a linear fit.

measurement been different, we would have obtained a slightly different estimate
for the slope and intercept. Let us begin with estimating the error of the slope by
computing its variance,

Var [b] = Var

[∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2

]
,

where we have inserted b from eq. 9.8 into the “variance operator”. The sum in
the denominator is constant because all values xi are fixed, so, using the rules for
calculating with the variance discussed in sec. 5.4.1 we can also write

Var

[∑n
i=1(yi − ȳ)(xi − x̄)∑n

i=1(xi − x̄)2

]
=

1

(
∑n

i=1(xi − x̄)2)
2 Var

[
n∑
i=1

(yi − ȳ)(xi − x̄)

]
.



9.2. DETERMINING THE ERRORS OF THE FIT PARAMETERS 133

Thus we only need to compute the variance of the following term,

n∑
i=1

(yi − ȳ)(xi − x̄) =
n∑
i=1

(xi − x̄)yi −
n∑
i=1

(xi − x̄)ȳ,

=
n∑
i=1

(xi − x̄)yi − ȳ
n∑
i=1

(xi − x̄),

=
n∑
i=1

(xi − x̄)yi − ȳ(
n∑
i=1

xi −
n∑
i=1

x̄),

=
n∑
i=1

(xi − x̄)yi,

=
n∑
i=1

(xi − x̄)(a+ b · xi + εi),

= a
n∑
i=1

(xi − x̄) + b
n∑
i=1

(xi − x̄)xi +
n∑
i=1

(xi − x̄)εi.

We can split the variance of this expression into the sum of the variances of the
three terms because they are independent2. But taking the variance of these three
terms, only the last will survive because the two first terms are constants, i.e.,
have a vanishing variance. Thus, the variance is given by,

Var [b] =
1

(
∑n

i=1(xi − x̄)2)
2 Var

[
n∑
i=1

(xi − x̄)εi

]
.

We are not quite done yet. Again,
∑n

i=1(xi − x̄) inside the variance is a constant,
and can be taken out of the variance because of Var [aX] = a2 Var [X]. Finally,
Var [

∑n
i=1 εi] = σ2 where σ2 is the “spread” of the individual measurements around

the underlying physical model. Thus, using the definition of the empirical standard
deviation (eq. 7.4), we now have the expression for the error of the slope,

σb =

√
σ2∑n

i=1(xi − x̄)2
=

σ√∑n
i=1(xi − x̄)2

=
σ√

n− 1σx
. (9.12)

2See the properties of the variance on page 43.
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The derivation of this result is more easily understood if we define the quantities
Xi

.
= xi − x̄ and Yi

.
= yi − ȳ. With these quantities we now have,

Var

[
n∑
i=1

XiYi

]
= Var [X1Y1 +X2Y2 + . . . XnYn] ,

= X2
1 Var [Y1] +X2

2 Var [Y2] + . . . X2
n Var [Yn] ,

=
n∑
i=1

X2
i Var [Yi] ,

= σ2
y

n∑
i=1

X2
i .

In preparation of the following determination of the error of the intercept, we
determine the error of the model function, y(x) = a+ bx, where a = ȳ − b · x̄,

Var [y(x)] = Var [ȳ + b(x− x̄)] = Var [ȳ] + (x− x̄)2 Var [b] .

With

Var [ȳ] = Var

[∑n
i=1 yi
n

]
=

1

n2
Var

[
n∑
i=1

yi

]
=
nσ2

n2
=
σ2

n
,

and the square of eq. 9.12 to convert to variance, we have

Var [y(x)] = Var [ȳ + b(x− x̄)] =
σ2

n
+

σ2∑n
i=1(xi − x̄)2

(x− x̄)2, (9.13)

σy(x) = σ

√
1

n
+

(x− x̄)2∑n
i=1(xi − x̄)2

. (9.14)

The error of the intercept now follows trivially by considering eqs. 9.13 and
9.14 at x = 0,

Var [a] =
σ2

n
+

σ2(x̄)2∑n
i=1(xi − x̄)2

, and σa = σ

√
1

n
+

(x̄)2∑n
i=1(xi − x̄)2

. (9.15)

Finally, we also compute the error for a prediction of a new measurement
ypred at a (possibly new) value x. Because measurements are spread around y(x)
normally according to N (y(x), σ), we have to add this variance to our result for
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the variance of y(x), given in eq. 9.13. Thus,

Var [ypred] = Var [y(x)] + σ2 =
σ2

n
+

σ2(xi − x̄)2∑n
i=1(xi − x̄)2

+ σ2,

= σ2

(
1 +

1

n
+

(xi − x̄)2∑n
i=1(xi − x̄)2

)
, (9.16)

σypred = σ

√
1 +

1

n
+

(xi − x̄)2∑n
i=1(xi − x̄)2

. (9.17)

Example 9.2. To determine the work function, W , of a metal surface, we can
irradiate it with photons of known energies, Eγ = h · ν and measure the kinetic
energy of the electrons which are emitted by the material, in other words, by
exploiting the photo effect. The energy of the electrons is then Ee = Eγ − W
and can easily be measured by applying a retarding potential or using an energy
analyzer (E/q-filter). If we use photons with different energies, e.g., by applying
narrow-band filters, we will measure different electron energies, Ee, at different Eγ.
Plotting Ee vs.Eγ will give a straight line. Extrapolating it to Ee = 0 will give us
the work function of the metal. The error in this quantity can now be computed
given the relations we derived in this section. TODO

Summary 9.1. The following table provides a summary of the standard
errors of the various properties of the fitted model function. The two pre-
dictions are especially important, as we will see in the next section. It should
not come as a surprise to you that the prediction of a new measurement has
a substantially larger error than the prediction of the mean (the model func-
tion).

std. error of the slope σb =
√

σ2∑n
i=1(xi−x̄)2

= σ√∑n
i=1(xi−x̄)2

= σ√
n−1σx

,

std. error of intercept σa = σ
√

1
n

+ (x̄)2∑n
i=1(xi−x̄)2

,

std. error of predicted
mean

σy(x) = σ
√

1
n

+ (x−x̄)2∑n
i=1(xi−x̄)2

,

std. error of predicted
value (new measure-
ment)

σypred = σ
√

1 + 1
n

+ (x−x̄)2∑n
i=1(xi−x̄)2

.
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Figure 9.4: 207Bi spectrum acquired with an IRAS detector. From Knappmann
(2016).

9.3 Presenting your Results: A Calibration Line
207Bi decays by electron capture and has four (six) prominent lines at 481.7 keV
(1.54%), 553.8 keV (0.44%), (565.8 keV (0.442%)), 975.7 keV (7.1%), and 1047.8
keV (1.8%), (1059.8 keV (0.44%)), where intensities are given in parenthesis. This
source is often used to calibrate solid state detectors because these energetic elec-
trons are hardly affected by the detector’s dead layer and air, but (some) stop in
300 or 500 µm Si PIPS detectors which are used in many of our instruments. Lines
shown in parenthesis are not necessarily fully resolved in instruments. Figure 9.4
which is taken from Knappmann (2016) shows a spectrum acquired with an IRAS
detector used for the Lunar Lander Neutron and Dosimetry (LND) experiment on
China’s Chang’E4 mission to the far side of the Moon. One can easily see the four
prominent lines and recognizes the double peaks which are due to the two only
barely resolved less intense lines in the data of the central segment of the IRAS
detector.

The peaks and double peaks can be fitted with a model function which involves
Gaussian peak shapes and exponential backgrounds locally around the individual
peaks. We will see how to perform similar fits later on in this chapter. From such
a fit, Knappmann (2016) arrived at the ADC values given in Tab. 9.1.

The data can be plotted and fitted with a straight line as shown in the previous
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energy peak position
[keV] [ADC]
481.7 1427.5
553.8 1647.3
565.8 1685.6
975.7 2916.6

1047.8 3135.8
1059.8 3174.5

Table 9.1: Values of fitted peak positions (in ADCs) and the corresponding energies
(in keV) of the 207Bi conversion electrons. After Knappmann (2016).
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(a) LND 207Bi calibration data plotted
as energy vs.ADC values.
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(b) LND 207Bi calibration data plotted
as ADC values vs. energy.

Figure 9.5: Presentation of calibration results. The 99.9% confidence bands for
the mean and new measurements are invisible (because the calibration is so good).

section or using scipy ’s curve_fit routine. The results are presented in Fig. 9.5.
Actually, I meant to show you how to now plot a real calibration line such

as that shown in Fig. 2.4 in Ch. 2. But it turned out that the calibration of
LND’s detectors is so good that even the 99.9% confidence band for the mean and
the corresponding prediction band for new measurements are invisible in Fig. 9.5.
So here’s another example with some fake calibration data, as shown in Fig. 2.4.
That’s why I’ve replotted that figure with residuals in Fig. 9.6.

How do we determine the confidence and prediction bands shown in that figure?
Basically, we want to give a confidence interval for the sample mean, x̄, at a given
value of the independent (control) variable to agree with the population mean, µ,
at that location. As we showed in sec. 8.4, this is exactly the situation which is
treated by Student’s t. We repeat eq. 8.21 here for convenience because it shows
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how to report the mean together with its 1− α confidence interval.

µ = x̄± tα/2,n−1
s√
n
, (8.21)

where s is the empirical standard deviation and n the number of samples taken for
this mean. The multiplication of the empirical standard deviation by Student’s t
takes care of the additional uncertainty that we have because we had to estimate
the population mean from a sample mean. A summary is given in summary 8.4.

In summary 8.4 we can also remind ourselves that the prediction interval for
a new measurement is obtained by quadratically adding the standard error of a
measurement to the last term in eq. 8.21,

µ = x̄± tα/2,n−1s

√
1 +

1

n
. (8.22)

so this is then what we need to do here too and that is what we have plotted in
Fig. 9.6 using the errors of the mean (eq. 9.14) and of a new measurement (9.16)
both multiplied by Student’s t for the relevant confidence level (here 95%) and
degrees of freedom.

Again, the reason for this additional “safety factor”, tα/2,n−1, is explained in
sec. 8.4 and in summary 8.4. Basically, it is here to account for our determining
all fit parameters from the data without having any knowledge of the underlying
“true” model parameters.

Definition 9.1. A (1 − α) confidence band is a band around the model for
the mean which has a probability α of being wrong (in the sense of hypothesis
testing).

Definition 9.2. A (1 − α) prediction band is a band around the model pre-
diction for a new measurement which has a probability α of observing a new
measurement outside of this band.

Careful inspection of Fig. 9.6 reveals that the shaded areas are slightly curved
and are narrowest around the middle of the plot and get wider the farther away
we move from the middle. This is not just an impression, but is the result of the
term (x− x̄)2 in the numerator of the last terms in the sqare root of eqs. 9.14 and
9.17. Thus, if you want your calibration to be especially good in a certain region
then you should ensure that you fit around that region. Your fit will always be the
least certain at the boundaries of your fit region, so take that into account! You
can also see this more clearly by inspecting once more, Fig. 9.1 in the introduction
to this chapter.
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Figure 9.6: An invented calibration line showing the 95% confidence band for the
mean and new measurements as well as the residuals.

Summary 9.2. To plot a (1 − α) confidence band for the mean and
a (1 − α) prediction band for new measurements, use the following
expressions which are valid for a linear fit y(x) = a+ b · x only:

conf. band for mean c(x) = y(x)± t1−α/2,n−2 · σ
√

1
n

+ (x−x̄)2∑n
i=1(xi−x̄)2

,

pred. band for new
measurement

p(x) = y(x)± t1−α/2,n−2 · σ
√

1 + 1
n

+ (x−x̄)2∑n
i=1(xi−x̄)2

,

where n is the number of data points and t1−α/2,n−2 is Student’s t, and σ
is the error of the measurements on the y axis. Student’s t needs to be
calculated for n− 2 degrees of freedom because the linear fit “uses up” two
degrees of freedom.
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9.4 Linear Least Squares Fitting of a Model

Quite often, a simple linear model can not explain the data and we need to fit a
more complicated model to the data. This could be a polynomial fit to a com-
plicated curve or an exponential fit to the activity of a radioactive source. The
key point in this section is that the model depends on the model parameters in a
linear manner. A (crazy) example could be

y(x) = a+ b · x+ c · sin((π/2)x) + d · exp(−x). (9.18)

As you see, the model, y(x), depends linearly on the parameters a, b, c, and d
although the so-called basis functions (1, x, sin((π/2)x), and exp(−x)) are non-
linear. In this section, I will present fitting techniques for model functions of the
form

y(x, a) =
m∑
j=1

ajFj(x), (9.19)

where Fj(x) are arbitrary functions of x and y(x, a) depends linearly on the model
paramters, aj. The more general case where the model function can depend non-
linearly on the model parameters is treated in Sec. 9.6.

We again determine the optimal parameters by minimizing the χ2,

χ2(a)
.
=

n∑
i=1

(yi − y(xi, a))2

σ2
i

, (9.20)

where σi are the errors of the measurements where known. If we don’t know them
or all σi are equal, they can be set equal to one, σi = 1, ∀i. For the following
treatment, note that there are n data points and m model parameters. We can
express χ2 using elementary linear algebra by noting that the data points yi can be
viewed as an n-dimensional vector, the parameters as an m-dimensional one, the
model function, y(xi, a), evaluated at xi is in turn also a n-dimensional vector. The
m basis functions, Fj, are also evaluated at all xi and so Fj(xi) can be expressed
as a n×m matrix, Fij. With this notation, eq. 9.19 is transformed into

y(xi, a) =
m∑
j=1

Fijaj, i ∈ {1, 2, . . . , n}, or in matrix form y = Fa. (9.21)

We also define the normalized vector b and normalized matrix A by their compo-
nents,

bi
.
=
yi
σi
, and Aij

.
=
Fij
σi
, (9.22)
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where Aij is often called the design matrix for the least-squares fit (Press et al.,
1989). Using these definitions, we can write χ2 (eq. 9.20) as a matrix multiplica-
tion,

χ2 = (b−Aa)T (b−Aa), (9.23)
where the T signifies the transpose of the matrix and so ensures that we get a
meaningful result. Taking the derivative with respect to the parameters and setting
equal to zero to minimize χ2,

∂χ2

∂a
=

∂

∂a
(b−Aa)T (b−Aa) = 0,

=

(
∂

∂a
(b−Aa)T

)
(b−Aa) + (b−Aa)T

(
∂

∂a
(b−Aa)

)
,

= − AT︸︷︷︸
matrix

(b−Aa)︸ ︷︷ ︸
vector

− (b−Aa)T︸ ︷︷ ︸
vector

A︸︷︷︸
matrix

0 = 2AT (b−Aa),

(ATA)a = ATb, (9.24)

where we have divided by 2 in line 5. We can solve eq. 9.24 for the model param-
eters, a,

a = (ATA)−1ATb = CATb, or aj =
m∑
j=1

Cjk

n∑
i=1

yi
Fk(xi)

σ2
i

, (9.25)

where C = (ATA)−1 is the covariance matrix of the problem. It describes the
covariance of the parameters of the model, as we will see momentarily. This means
that we need to expect that the errors or uncertainties in the different parameters
may be correlated, which should not come as a surprise to you.

The variances of the parameters can be estimated using the usual law of error
propagation,

σ(aj)
2 =

n∑
i=1

(
∂aj
∂yi

)2

σ2
i ,

where, as usual, σi are the errors of the dependent variable or measurements, yi.
We compute the partial derivatives of the parameters with respect to yi,

∂aj
∂yi

=
m∑
k=1

Cjk
Fk(xi)

σ2
i

,

because Cjk and A are independent of yi. Inserting this expression into the error
propagation, we obtain

σ2(aj) =
m∑
k=1

m∑
l=1

CjkCjl

[
n∑
i=1

Fk(xi)Fl(xi)

σ2
i

]
. (9.26)
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The final term in eq. 9.26 is nothing else than ATA and thus the inverse of Ckl,
thus reducing eq. 9.26 to

σ2(aj) = Cjj. (9.27)

This means that the variances of the model parameters are given by the diagonal
elements of the covariance matrix, Cjj. Unsurprisingly, the covariances among the
model parameters are given by the off-diagonal elements of the covariance matrix.
An example for a general linear least squares fit using the model function given
in the introduction to this section in eq. 9.20 is shown in Fig. 9.7. The following
parameters were used to generate the data: a = 1.0, b = 0.5, c = 1.0, and d = 10.0,
σi = 0.5. I used scipy ’s curve_fit to fit the model to the data.

from sc ipy . opt imize import curve_f i t
a = 1 . ; b = . 5 ; c =1. ; d=10. ; dy = 0 .5

de f func (x , a , b , c , d ) :
r e turn a + b∗x + c∗ s i n ( p i /2∗x ) + d∗exp(−x )

n = 51
x = l i n s p a c e ( 0 . , 1 0 , n )
y = func (x , a , b , c , d ) + random . normal ( 0 . , dy , n)
i n i t i a l_v a l u e s = array ( [ 1 . 5 , 0 . 3 , 2 . , 5 . ] )
popt , pcov = curve_f i t ( func , x , y , p0=i n i t i a l_v a l u e s )
p r i n t ( ’ a␣=␣{}␣+/−␣{} ’ . format ( popt [ 0 ] , s q r t ( pcov [ 0 , 0 ] ) ) )

9.5 Confidence and Prediction Bands for General
Least Squares Fits

But wait! Where are the confidence and prediction bands in Fig. 9.7? How should
they be computed for the more general case considered in the previous section 9.4?
Luckily, it turns out that we have already done most of the work for this! Remem-
ber the model function,

y(x, a) =
m∑
j=1

Fijaj, i ∈ {1, 2, . . . , n}, or in matrix form y = Fa,

as given in eq. 9.21. Using this, we can compute the errors of y(x, a) by

δy(x, a) =
m∑
j=1

δajFj(x).
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Figure 9.7: Example of a general linear least squares fit with the model function
given in eq. 9.20.

Now the covariance σ2
y(x, x

′)
.
= 〈δy(x)δy(x′)〉 is given by

σ2
y(x, x

′) =
m∑
j=1

m∑
k=1

〈δajδak〉Fj(x)Fk(x
′) =

m∑
j=1

m∑
k=1

CjkFj(x)Fk(x
′). (9.28)

Note that this expression shows that the errors of the model function are correlated
between x and x′, unlike the measurement errors which are independent of each
other! Note also, that this result is independent of the model parameters, aj, and
is valid for any values x and x′, not only the data points, xi. In order to be able
to plot the confidence and prediction bands, we only use σ2

y(x, x) = σ2
y(x),

σ2
y(x) =

m∑
j=1

m∑
k=1

CjkFj(x)Fk(x) = xT (x)Cx(x), (9.29)

where xT (x) = (F1(x), F2(x), . . . , Fm(x)). Before we proceed to plot this in another
example, let us briefly investigate the consequences of eq. 9.29.

Consider the weighted mean of σ2
y(x) averaged over all points x = x1, . . . , xn,

1

n

n∑
i=1

σ2
y(xi)

σ2
i

=
1

n

m∑
j=1

m∑
k=1

Cjk

n∑
i=1

Fj(xi)

σi

Fk(xi)

σi
.
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Remembering the definition of A .
= Fj(xi)/σi in eq. 9.22, we see that the sum over

i is nothing else than a matrix multiplication,
n∑
i=1

AijAik = (ATA)kj = (C)−1
kj ,

i.e., the inverse of the covariance matrix. Thus we arrive at the following result,

1

n

n∑
i=1

σ2
y(x)

σ2
i

=
1

n

m∑
j=1

m∑
k=1

Cjk(C)−1
kj =

1

n

m∑
j=1

Ijj =
m

n
. (9.30)

In the case of constant errors, independent of x, i.e., σi = σ = const., we obtain

σ̄2
y =

1

n

n∑
i=1

σ2
y(xi) =

m

n
σ2.

In other words, the average variance of the mean of the model predition is (m/n)σ2
y,

a factor ofm larger than the “ordinary” variance of the mean we normally use when
averaging data. We see here clearly that the number of degrees of freedom which
we use in our model comes at a cost, namely the cost of loss of predicitve power.
In yet other words, the more model parameters you need to obtain a good fit, the
larger will be the resulting errors of your model function! This certainly drives
home the point that you need to find a good model, best a good physical model,
with as few parameters as needed.

OK, so now let’s use these results to plot a confidence and prediction band in
Fig. 9.7. The following code snippets define the basis functions and implementation
of the confidence band. The implementation is shown in Fig. 9.8.

de f func (x , a , b , c , d ) :
r e turn a∗ f 0 ( x ) + b∗ f 1 ( x ) + c∗ f 2 ( x ) + d∗ f 3 ( x )

de f f 0 ( x ) : #ba s i s f unc t i on
re turn ones ( l en (x ) )

de f f 1 ( x ) : #ba s i s f unc t i on
re turn x

de f f 2 ( x ) : #ba s i s f unc t i on
re turn s i n ( p i /2∗x )

de f f 3 ( x ) : #ba s i s f unc t i on
re turn exp(−x )
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Note that we have explicitly split out the basis functions, Fj, and defined the model
function as the sum of the products of the parameters, aj, and basis functions, Fj.
This allows us to access the basis functions individually when we want to calculate
the confidence band (eq. 9.29). This is done in the following code snippet.

de f conf_band (x , yerr , popt , pcov , s i g n i f ) :
n = len (x )
np = len ( popt )
f = [ ]
f = append ( f , f 0 (x , popt ) )
f = append ( f , f 1 (x , popt ) )
f = append ( f , f 2 (x , popt ) )
f = append ( f , f 3 (x , popt ) )
f = reshape ( f , ( np , n ) )
d = ze ro s (n)
f o r j in l i n s p a c e (0 , np−1,np ) :

f o r k in l i n s p a c e (0 , np−1,np ) :
d += pcov [ j , k ]∗ f [ j ]∗ f [ k ] #ba s i s f unc t i on s !

alpha = 1.− s i g n i f /2
tva l = t . ppf ( alpha , n−np)
cb = tva l ∗ s q r t (d) #conf band f o r model func
pb = tva l ∗ s q r t ( ye r r ∗∗2 + d) #pred band f o r new meas
re turn cb , pb

To plot the confidence and prediciton bands, we use matplotlib’s filled_between
command,

s i g n i f = 0 .05
cb , pb = conf_band (x , ye , popt , pcov , s i g n i f )
ax1 . f i l l_be tween (x , model_data+pb , model_data−pb ,

c o l o r=’ grey ’ , alpha =0.2)
ax1 . f i l l_be tween (x , model_data+cb , model_data−cb ,

c o l o r=’ blue ’ , alpha =0.5)
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Figure 9.8: The same as Fig. 9.7, but now with confidence and prediction bands.

Summary 9.3. In the general linear least-squares fitting procedure, the
error of the model is given by eq. 9.29,

σ2
y(x) =

m∑
j=1

m∑
k=1

CjkFj(x)Fj(x) = xT (x)Cx(x),

where Cjk is the covariance matrix which is returned by most fitting routines
and the Fj(x) are the basis functions which define the model function,

y(x, a) =
m∑
j=1

Fj(x)aj.

The weighted average variance of the model function, σ̄2
y = (m/n) · σ2 goes

as m/n where m is the number of model parameters (degrees of freedom)
and n is the number of data points. This tells you to be careful when trying
to “improve” your model by adding new parameters. Its predicitve power
declines with additional parameters!
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9.6 Non-linear Fitting of a Model to Data

Sofar we have treated linear models or linear fits. While the model function used
in Sec. 9.4 (eq. 9.18) looked awfully non-linear, it is in fact linear in all the model
parameters. This is what is meant with a linear model. We are now going to treat
models in which this is no longer the case. One of the most frequent such models
is the Gaussian,

y(x) =
a√

2πc2
exp

(
−(x− b)2

2c2

)
.

Clearly, the parameters b and c appear non-linearly in this example. Note how-
ever, that some apparently non-linear problems can be transformed into a linear
problem, an example is

“non-linear” y(x) = a exp(−bx)
log−→ log(y(x)) = c− bx is linear.

In truly non-linear problems, the model function can be written as

y(x) = y(x, a) =
m∑
j=1

ajFj(x, ajk), (9.31)

in other words, the parameters can appear non-linearly in the arguments of the
(non-linear) basis functions. Fitting will still proceed to minimize the χ2,

χ2 =
n∑
i=1

(yi − y(x, a))2

σ2
i

=
n∑
i=1

(yi −
∑m

j=1 ajFj(x, ajk))
2

σ2
i

.

This looks rather complicated and is only shown here to motivate the following
considerations. In the linear least squares procedures we could calculate the opti-
mal parameters by linear algebra, by solving a system of linear equations. This is
no longer possible when we are faced with non-linear problems. But not all hope
is lost! Consider the following: We are looking for the set of parameters, â which
minimizes the χ2 of the problem. If we succeed in finding a reasonably good initial
guess for the model parameters, a, wich is not too far from â, then we can linearize
the model function in this vicinity using a Taylor expansion around â,

y(x, a) = y(x, â) +
m∑
j=1

∂y(x, a)

∂aj

∣∣∣∣
â

(aj − âj),

= y(x, â) + (a− â)Td(x, â), (9.32)

where dj(x, â)
.
=

∂y(x, a)

∂aj

∣∣∣∣
â

.



148 CHAPTER 9. FITTING A MODEL TO THE DATA

Similarly, we can write the χ2

χ2(a) = χ2(â) +
m∑
j=1

∂χ2(a)

∂aj

∣∣∣∣
â

(aj − âj) +
m∑
j=1

m∑
k=1

∂2χ2(x, a)

∂aj∂ak

∣∣∣∣
â

(aj − âj)(ak − âk) + . . . ,

≈ χ2(â) +
m∑
j=1

m∑
k=1

∂2χ2(x, a)

∂aj∂ak

∣∣∣∣
â

(aj − âj)(ak − âk), (9.33)

= χ2(â) + (a− â)TH(â)(a− â), (9.34)

where χ2(â) is in fact χ2
min because that is what â is defined as. The neglection of

the linear term in the second line happens for exactly that reason too, it vanishes
because it is evaluated at â which minimizes χ2. The Hessian is defined as

H(â) = hjk(â) =
1

2

∂2χ2(a)

∂aj∂ak

∣∣∣∣
â

=
n∑
i=1

∂y(xi, a)

∂aj

∣∣∣∣
â

∂y(xi, a)

∂ak

∣∣∣∣
â

,

where the second step is not obvious, but follows from performing the partial
derivatives on

χ2(a) =
n∑
i=1

[
yi −

(
y(x, â) +

∑m
j=1

∂y(x,a)
∂aj

∣∣∣
â

(aj − âj)
)]2

σ2
i

,

and noting that all quantities involving only â (and not a) are constant, as well as
yi. The above expression for the Hessian then follows.

Following Richter (1995) we now define

Aij(â)
.
=

1

σi

∂y(xi, a)

∂aj

∣∣∣∣
â

=
dj(xi, â)

σi
,

from which we have
H(â) = ATA,

which translates exactly to the expressions in the last section 9.4 for the linear
least squares case! This allows us to use the expressions which we have already
derived for the linear case and gives us the variance of the parameters as usual,

σ2
a(â) = C(â) = H−1(â).

Similarly, the variance of the model function is now

σ2
y(x, â) =

m∑
j=1

m∑
k=1

Cjk(â)dj(x, â)dk(x, â),

= d(x, â)TC(â)d(x, â), (9.35)
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which is formally the same as eq. 9.29 but with x replaced by d. In other words,
all we did was replace the basis functions, Fj(x), by the derivatives ∂y/∂aj. Again,
this translates exactly to eq. 9.29 if we consider a linear model function. Moreover,
eq. 9.30 still holds

1

n

n∑
i=1

σ2
y(x)

σ2
i

=
1

n

m∑
j=1

m∑
k=1

Cjk(C)−1
kj =

1

n

m∑
j=1

Ijj =
m

n
.

as it does in the case of constant errors,

σ̄2
y =

1

n

n∑
i=1

σ2
y(xi) =

m

n
σ2.

The only - but important - difference is that these results all depend on the solution
parameters, â.

Let us now work through an example to illustrate how to use these newly
found relations by considering a combination of an exponential background and a
Gaussian peak form, i.e., the model function used for one of the individual peaks
in Fig. 9.4.

y(x) = a · exp(−b · (x− xlo)) + c · exp

(
−(x− d)2

e2

)
, (9.36)

where xlo is only introduced as a convenience and is no free parameter. We also
need to prepare the derivatives with respect to the five parameters, a, b, c, d, and
e:

∂y

∂a
= exp(−b · (x− xlo)) (9.37)

∂y

∂b
= −a · x · exp(−b · (x− xlo)), (9.38)

∂y

∂c
= exp

(
−(x− d)2

e2

)
, (9.39)

∂y

∂d
= 2(x− d)c exp

(
−(x− d)2

e2

)
, (9.40)

∂y

∂e
=

(x− d)2

e3
c exp

(
−(x− d)2

e2

)
. (9.41)

Note that we have removed the factor of 2 in the denominator of the exponent of
the Gaussian to simplify matters. We’ll need to account for that when we evaluate
the fitted e =

√
2σ of the Gaussian.

I present a few code snippet here to show how the fitting problem is solved.
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de f func (x , a , b , c , d , e ) :
r e turn a∗exp(−b∗(x−x lo ) ) + c∗exp(−(x−d)∗∗2/( e∗e ) )

de f dfda (x , popt ) :
r e turn exp(−popt [ 1 ] ∗ ( x−x lo ) )

de f dfdb (x , popt ) :
r e turn − popt [ 0 ] ∗ x∗exp(−popt [ 1 ] ∗ ( x−x lo ) )

de f dfdc (x , popt ) :
r e turn exp(−(x−popt [ 3 ] ) ∗ ∗ 2 / ( popt [ 4 ] ∗ popt [ 4 ] ) )

de f dfdd (x , popt ) :
r e turn 2∗(x−popt [ 3 ] ) ∗ popt [2}∗ exp(−(x−popt [ 3 ] ) ∗ ∗ 2 /

( popt [ 4 ] ∗ popt [ 4 ] ) )
de f dfde (x , popt ) :

r e turn ( ( x−popt [ 3 ] ) ∗ ∗ 2 ) / ( popt [ 4 ] ∗ ∗ 3 ) ∗ popt [2}∗
exp(−(x−popt [ 3 ] ) ∗ ∗ 2 / ( popt [ 4 ] ∗ popt [ 4 ] ) )

The definition of the confidence and prediction bands is solved just as before,

de f conf_band (x , yerr , popt , pcov , s i g n i f ) :
n = len (x )
np = len ( popt )
df = [ ]
df = append ( df , dfda (x , popt ) )
df = append ( df , dfdb (x , popt ) )
df = append ( df , dfdc (x , popt ) )
df = append ( df , dfdd (x , popt ) )
df = append ( df , dfde (x , popt ) )
df = reshape ( df , ( np , n ) )
d = ze ro s (n)
f o r j in l i n s p a c e (0 , np−1,np ) :

f o r k in l i n s p a c e (0 , np−1,np ) :
d += pcov [ j , k ]∗ df [ j ]∗ df [ k ]

. . . , and the fit is performed in the usual way.

de f main ( ) :
random . seed (12345678)
n = 201
x = l i n s p a c e ( xlo , xhi , n )
y = func (x , a , b , c , d , e )
ye = sq r t ( y )
y = y + random . normal ( s c a l e=ye )
i n i t i a l_v a l u e s = array ( [ 1 . 5 e10 , 0 . 9 , 1 . 5 e6 , 1 0 2 . , 2 . ] )
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Fit results:
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Figure 9.9: Fit of a non-linear model to non-linear data.

popt , pcov = curve_f i t ( func , x , y , p0=in i t i a l_va l u e s ,
sigma=ye , absolute_sigma=True )

model_data = func (x , popt [ 0 ] , popt [ 1 ] , popt [ 2 ] , popt [ 3 ] ,
popt [ 4 ] )

. . . , etc.
The data were generated with the following parameters, a = 1.e8; b = 0.5;

c = 1.e6; d = 100.; and e = 1. Moreover xlo = 80 was chosen. The data and fit are
presented in Fig. 9.9. Because of the large dynamic range, the lower panel shows
the ratio of (yi − y(xi, a))/y(xi, a) instead of the usual residuals.

9.7 Non-Linear Minimization of χ2: Levenberg-Marquardt
and Trust-Region Methods

The aim of this section is to show you the principle how minimization algorithms
for non-linear least-squares solvers work. Consider the Gaussian model function
given in eq. 9.42. Using the methods presented in chapter 6 it is easy to generate
a set of data, in this specific case I used standard normally distributed errors,
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Figure 9.10: χ2 “landscape” for fitting the Gaussian given in eq. 9.42 to Monte-
Carlo-generated data. A contour plot is overlaid to improve visibility.

σ = N (0, 1) and generated 51 data points.

y(x) =
100.√
2πσ2

· exp

(
−(x− x0)2

σ2

)
(9.42)

We can now compute the χ2 for this problem for different values of x0 and σ and
plot it as a heat map or contour plot. This is shown in Fig. 9.10 which illustrates
the χ2 “landscape” in which the minimizer must fund the global minimum. In the
left-hand case, the landscape looks smooth and a minimizer will not have problems
in finding the minimum. The right-hand panel shows the same χ2 but for a much
wider region around the global minimum and exhibits some weird “mountains”
at low values for trial parameter σ and a plateau for trial parameter 2 . x0. If
the minimizer starts at very small values for σ it may have difficulties getting
out of the hilly region, if it starts on the plateau, it will take a while to find an
appreciable slope for it to “know” in which direction to move towards the global
minimum. This underlines the importance of finding good starting estimates for
the parameters with which the minimizer can start its work.

The previous paragraph has already hinted how minimizers for non-linear prob-
lems work. Their key ingredient is to find the gradient of the χ2 and follow it until
you’ve reached the minimum of χ2. There are various strategies to do this, scipy
’s optimize function offers a number of methods which you can look up. I will
not explain them all in detail here, but try to give you an idea how they work,
following Vanden-Berghen (2004).

Consider a function, F (x) : Rn −→ R, for which you want to find the minimum,
xmin = x̂. Thus, F is a so-called “merit function”, for instance the χ2 of our
problem. We expand F into a Taylor’s series around some value x0 and truncate
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it at second order,

F (x0+δ) ≈ F (x0)+
∂F

∂xi

∣∣∣∣
x0

δ+
1

2
δT
(

∂2F

∂xi∂xj

)∣∣∣∣
x0

δ = F (x0)+g(x0)T δ+
1

2
δTH(x0)δ.

(9.43)
The potentially large matrix which contains the partial second derivatives is the
Hessian, H, of the function, F ; g(x) = ~∇F is the gradient. When we’re close
to the minimum x̂, the gradient will be close to zero and the Hessian will have
positive curvature (otherwise we’d be at a local maximum). So when we’re close
to the minimum, we can solve for the minimum by solving

~∇F (x̂i + δi) = gi +Hiδj = 0 ⇐⇒ Hiδi = −gi, (9.44)

allowing us to take one step, δi to the minimum. This is similar to what we did
when we were minimizing linear problems and is called a Newton step δi. Of
course, we can also perform such steps when we’re not exactly at the minimum and
iterate our way towards the minimum. This is the idea behind Newton’s algorithm
or method:

1. choose a starting point, x0

2. compute δi by solving Hiδi = −gi

3. set xi+1 = xi + δi

4. set i = i+ 1 and continue with 2 unless gi ≈ 0 in which case you stop.

This is an example for a so-called “line-search” method in which one first deter-
mines the direction along which one attempts to find the solution. In these general
line-search methods one often limits the length of the step by multiplying δi by
some 0 < α ≤ 1. Newton’s method corresponds to α = 1 and is very efficient when
we are close to the solution, x̂. Thus we should always use a full Newton step when
we’re close to the global minimum. Unfortunately, it can fail miserably when we’re
far from x̂ because the gradient and Hessian can guide us in the wrong direction.
But there is also a different problem which is much worse. What happens if the
Hessian is not positive definite (as it is in the vicinity of the solution)? We then
have negative curvature to the problem and the Hessian guides us far away from
the current position. In other words, Newton’s method will only converge if the
Hessian, H, is positive definite. This can also be seen from the following consider-
ations. In order to converge, the search direction must be a descent direction for
the gradient, i.e.,

δTg < 0. (9.45)
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Now we use g as determined by eq. 9.44 and insert it in eq. 9.45 to yield

− δTi Hiδi < 0 ⇐⇒ δTi Hiδi > 0, (9.46)

in other words, the Hessian, Hi must be positive definite to ensure convergence
of line-search methods. Only having a negative gradient will not be sufficient!
So how can we ensure a positive definite Hessian which will allow us to solve the
minimization problem?

The answer is as surprising as it is simple. Consider our approximation to
F (x+δ) in eq. 9.43. It is just that, it is an approximation. Obviously, if we changed
that approximation it would be a less good approximation, but not necessarily
worse for finding a solution. So what if we used a different “Hessian” in eq. 9.43,
one that certainly is positive definite? We define an approximation of the Hessian,
Di. For instance, we could approximate the Hessian using the identity matrix, I,
so that Di = I. In this case Di is always positive definite and eq. 9.44 reduces to

δi = −gi. (9.47)

It tells us to take a step exactly along the (negative) gradient. This is the steepest
direction we can choose and this method is thus called the “steepest descent algo-
rithm”. While this can work, it is a very inefficient algorithm which can overshoot
and wreak havoc on your optimization problem. So let us consider a slightly more
complicated approximation to the Hessian, Di = Hi+λI. It retains some informa-
tion of the Hessian, but we can choose λ large enough to ensure that Di is positive
definite. Repeating the Newton step (eq. 9.44) with this new approximation we
get

Diδi = −gi ⇐⇒ (Hi + λI)δi = −gi. (9.48)

This modified Newton step has two consequences. First, the Hessian, Hi, is negli-
gible in the expression and we get a “steepest descent” estimate. But this steepest
descent estimate for δi is no longer the full step size but a factor 1/λ smaller.
This is the second effect. Note that we can now make the step size arbitrarily
small by choosing λ appropriately large. This will also ensure that Di is positive
definite. So this algorithm will converge. Vanden-Berghen (2004) states that it
can be proven that if one limits the step size ||δi|| < ∆i then one maintains global
convergence even if Di is an indefinite matrix! This is the idea behind so-called
“trust-region” algorithms which are implemented in scipy . Levenberg-Marquardt
algorithms on the other hand, adapt the value of λ throughout the optimization,
starting with a large λ and ending with a very small value for λ. If the optimiza-
tion step was unsuccessful, increase the value of λ by a large factor (Press et al.
(1989) choose a factor 10). If an optimization step was successful, λ is decreased
by a large factor (and yes, Press et al. (1989) again choose a factor of 10). Once
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you get to close to the minimum, your value of λ decreases a lot and you end
up taking near perfect Newton steps. This is then where it pays off to retain the
Hessian in the approximation, because now you can still use the information in
it to compute the covariance matrix, i.e., the inverse of the Hessian, to estimate
confidence limits on the parameters and fit function. The difficulty and problem
with the Levenberg-Marquart algorithm lies in intermediate values for λ for which
the new estimate (search direction) is determined by a mixture of steepest descent
and Newton’s step. This is a step in the direction defined by the perturbed “Hes-
sian”, B in which the perturbation, λI, has no geometrical meaning. It can point
in any direction.

This difficulty in the Levenberg-Marquart algorithm is overcome in the more
modern trust-region algorithms. They replace the adaptations of λ by a more
controlled restriction to a “trust region” and uses Newton’s method to search for
a minimum of the quadratic approximation Q(xi) to the function F (xi) inside a
generally circular trust region. This minimum then serves as the next starting
point and one so iteratively searches for the global minimum. If the quadratic
approximation is good, one expands the trust region, if it is bad, one tightens the
trust region. Note that such trust-region methods require many evaluations of the
function, F , and its approximation, Q. Vanden-Berghen (2004) gives an example
for a simple trust-region algorithm. We consider a quadratic approximation, Q, of
the function, F , to be minimized,

Q(x0) = F (x0) + g(x0)T δ0 +
1

2
δT0 D(x0)δ0,

where x0 is the initial guess and D(x0) is the approximation to the Hessian also
evaluated at x0. The method then proceeds as follows:

1. Solve D(x0)δ0 = −g(x0) subject to ||δ0|| < ∆0. Typically, this would mean
that |δT0 δ0| < ∆2, i.e., ∆2 < δ2 where |∆| is the radius of a circle around x0.

2. Compute the quadratic approximation Q(x) inside the trust region and use
this to compute the degree of agreement, ri between F (xi and Q(xi),

ri =
F (xi)− F (xi + δi)

Q(xi)−Q(xi + δi)

3. Update xi and ∆i according to the following table

ri < 0.01 0.01 < ri < 0.9 0.9 < ri
(bad iteration) (good iteration) (very good iteration)
xi+1 = xi xi+1 = xi + δi xi+1 = xi + δi
∆i+1 = ∆i

2
∆i+1 = ∆i ∆i+1 = 2∆i
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4. Increment i = i+ 1 and go to step 1 unless gi ≈ 0 in which case you stop.

Note that this implies evaluation of gi and Di at each step, in other words, we
need to compute derivatives or at least find a way to approximate them. This is
done in the various implementations of trust-region algorithms.

Summary 9.4. Most non-linear minimization methods are of the
Levenberg-Marquardt or Trust-Region type. The latter are more robust,
the former tend to be faster if the objective function is smooth and well-
behaved. Whichever method you choose, its success depends crucially on
your choice of initial parameters. It is always worth while to put a lot of
effort in finding good initial guesses for the parameters!

9.8 Orthogonal Distance Regression
So far, we have only considered problems in which the independent variable had
no errors associated with it. This could be a calibration line with calibration
standards as the independent variable, or a signal which is measured at fixed
intervals in time. We considered the calibration of LND’s detectors with the 207Bi
conversion electrons whose energies are know to high precision. On the other hand,
in the introduction we mentioned the case of fitting a power law to measurements
of energetic particles. Most space instruments can not afford to send back the
full information about a measurement, and so the energy bins (as the independent
variable) are often quite wide. How do we fit a model (e.g., a power law) to such
data, in other words, how do we take into account the errors in the x axis as
well as those in the y-axis? Other examples could be fitting an orbital curve to
observations of a comet. These are measurements on the plane of the sky and in
this case it is obvious that there are errors in the x and in the y direction.

Such situations are treated by orthogonal distance regression (ODR) algo-
rithms or methods. Conceptually, all that needs to be done is to add the possibility
of errors in the independent variable, x,

yi = f(xi, a) + εi −→ yi = f(xi + δi, a) + εi,

where a is the vector containing all the parameters of the model f which describes
the measurements, yi ∈ R1, and the xi can be multi-dimensional, i.e., xi ∈ Rm

where m ≥ 1. An example would be the temperature of a plate which is heated
non-uniformly. Then the temperature depends on both spatial dimensions, not
only on one.

ODR considers the distance from the data point, (xi, yi), to the model curve,
f(xi + δi, a), and attempts to minimize the sum of squares, thus generalizing the
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concept of ordinary least squares minimization. The square of the distance of the
point (xi, yi) to the model is

r2
i = (f(xi + δi, a)− yi)2 + δTi δi,

and follows from the Pythagorean theorem for the radius of the smallest possible
circle around (xi, yi) which is tangent to the model curve, f . This expression does
not yet account for the possibility that measurements in x and y can have different
precisions, and so we generalize the previous expression to the weighted orthogonal
distance,

r̃2
i = (f(xi + δi, a)− yi)2 + δTi d

2
i δi, (9.49)

where the di ∈ Rm×m are positive definite diagonal m by m matrices which weight
the individual components δi. The “best” set of parameters or the solution of this
optimization problem is then found by minimizing the sum of squares of r̃i,

mina,δ

(
n∑
i=1

w2
i (f(xi + δi, a)− yi)2 + δTi d

2
i δi

)
, (9.50)

where the weights, wi > 0, give the weights of the individual data points. Thus
eq. 9.50 defines the the orthogonal distance regression problem that needs to be
solved. Boggs et al. (1987) and Boggs and Rogers (1989) show that this problem
can be expressed as a non-linear least squares problem (see sec. 9.6) with n +
nm observations or measurement points and p + nm unknowns. They treat the
unknowns as a vector, ηT = (aT , δT1 , δ

T
2 , . . . , δ

T
n ). With this, they express the sum

of squares in eq. 9.50 as
S(η)

.
= G(η)TΩG(η).

Here G(η) is a vector valued function in which the ith element is given by

gi(η) =

{
f(xi + δi, a)− yi i = i, . . . , n,
ηp+i−n i = n+ 1, . . . , n+ nm

The matrix Ω ∈ R(n+nm)×(n+nm) is diagonal and represents the weights w and d.
In other words,

Ω =

[
W

D

]
, (9.51)

where W ∈ R(n×n) is the diagonal matrix with (diagonal) entries w2
i and D ∈

R(nm×nm) is the diagonal matrix which consists of diagonal sub-matrices w2
i d

2
i

(remember that xi ∈ Rm). Because of the diagonality of Ω, the least squares
condition of eq. 9.50 can be written as

minηS(η) = minη

n+nm∑
i=1

Ωiig
2
i (η), (9.52)
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Figure 9.11: Example for fitting with ODR.

where, of course, Ωii are the diagonal (ii-th) elements of Ω.
Boggs et al. (1987) solve this problem using a trust-region Levenberg-Marquardt

algorithm which is made available in scipy as the scipy .odr package. You
can find how to use it at https://docs.scipy.org/doc/scipy/reference/odr.
html.

Example 9.3. Figure 9.11 shows an example of data fitted with scipy ’s odr
package. A linear function

y(x) = 5.5 + 1.5 · x

was used as input. To generate the “data” points, I randomized them with σx =
0.05 and σy = 0.5, where I only randomized the x values after I had randomized
the y values. The following code snippets give you an idea how to use odr. The
data were generated as follows:

de f main ( ) :
random . seed (145)
a = 5 . 5 ; b = 1 .5 #in t e r c e p t and s l ope
pmod = [ a , b ]
n = 20 #number o f data po in t s
s i g n i f = 0 .05 #s i g n i f i c a n c e l e v e l
sx = 0 . 1 ; sy = 0 .5 #e r r o r s in x and y
x lo = 1 . ; xhi=5. #boundar ies

https://docs.scipy.org/doc/scipy/reference/odr.html
https://docs.scipy.org/doc/scipy/reference/odr.html
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x = l i n s p a c e ( xlo , xhi , n )
xp = l i n s p a c e ( xlo −0.25 , xhi +0.25 ,n ) #f o r p l o t s only
ym = l i n (pmod , x ) #model
y = l i n (pmod , x)+random . normal ( 0 . , sy , n ) #data y
xd = x + random . normal ( 0 . , sx , n ) #data x
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To fit a linear model to the data you need the following:

de f l i n (B, x ) :
r e turn B[ 0 ] + B[ 1 ] ∗ x

de f l i n_de r i v s (B, x ) :
r e turn [ ones ( l en (x ) ) , x ]

#in main ( ) add these l i n e s
de f main ( ) :

l i n e a r = odr . Model ( l i n )
mydata = odr . Data (x , y , wd=1./ sx∗ ones ( l en (x ) ) ,

we=1./ sy∗ ones ( l en (y ) ) )
myodr = odr .ODR(mydata , l i n e a r , beta0 =[1 .3 , 2 . 5 ] )
myoutput = myodr . run ( )
myoutput . ppr int ( )
popt = myoutput . beta #f i t t e d parameters
per r = myoutput . sd_beta #e r r o r s o f parameters
pcov = myoutput . cov_beta #covar iance matrix
pdel = myoutput . d e l t a #Array o f est imated e r r o r s

#in input va r i ab l e s , o f same shape as ‘x ‘
peps = myoutput . eps #Array o f est imated e r r o r s in

#response va r i ab l e s , o f same shape as ‘y ‘
paras = [ ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ ]
p r i n t ( " f i t t e d ␣parameters ␣ are : " )
f o r i in range (0 , l en ( popt ) ) :

p r i n t ( paras [ i ] , ’= ’ , popt [ i ] , ’+/− ’ , pe r r [ i ] )
#get the d e r i v a t i v e s f o r con f idence bands
dfdp = l in_de r i v s ( popt , x )
#get the con f idence bands
cbu , cb l = conf_band ( l i n , dfdp , x , y , sy , s i g n i f , popt ,

pcov , abs_weights=False )

where conf_band is defined on page 161.
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de f conf_band ( func , dfdp , x , y , yerr , s i g n i f , popt , pcov ,
abs_weights=False ) :

np = len ( popt ) #number o f parameters
n = len (x ) #number o f data po in t s
alpha = 1.− s i g n i f /2
tva l = t . ppf ( alpha , n−np) #student ’ s t
r_chisq , p = ch i square (y , func ( popt , x ) , np )
i f abs_weights :

cov_scale = 1 .
e l s e :

cov_scale = r_chisq
d = ze ro s (n)
f o r j in range (np ) :

f o r k in range (np ) :
d += dfdp [ j ]∗ dfdp [ k ]∗ pcov [ j , k ]

d1 = sq r t ( ye r r ∗∗2 + d)
d2 = sq r t ( cov_scale ∗d)
c i 1 = tva l ∗d1 #pr ed i c t i on band f o r a new measurement
c i 2 = tva l ∗d2 #con f idence band f o r the model
r e turn c i1 , c i 2

9.9 Maximum Likelihood Fitting Techniques

Consider measurements zi(xi) of some “true” value Z(xi). They will be distributed
randomly around the true value according to some probability density function
p(z, Z). This function is very often implicitly assumed to be a Gaussian or normal
distribution. Of course, this is not necessarily true. The true underlying proba-
bility density of the errors, p(z, Z) ought to be considered when fitting a model to
the data. Much too often, this is not done. Let us define the negative logarithm
of the probability density function, p(z, Z),

ρ(z, Z)
.
= − ln (p(z, Z)) .

Apart from the measurements, we (hopefully) have a model for the physics un-
derlying the result, i.e., a model for the zi, for instance, a linear model, Z .

= A~f ,
where ~f = ~f(~x) could, for instance, be a model energy spectrum. The matrix,
A, may depend on M parameters ~a = (a1, . . . , aM) and can also be a function of
energy, ~x. It could contain information about the geometry factor of the instru-
ment as well as about the detection efficiency (see chapter 2 for a discussion of the
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geometry factor and detection efficiencies.). In this case, ~f would be the expected
number of counts in energy bins ~x. Thus the expected measurements ~z can be
written as a function Z(xi,~a). In some cases, the only free parameters are ~f , be-
cause the model function is completely determined by physics and physics-based
simulations. This is the case for the detection of energetic particles with many of
our particle instruments.

With such a model, Z(xi,~a), we can determine the probability, P , that the n
measurements, zi, would occur for a given set of parameters ~a. We rewrite it using
ρ(z, Z) defined above.

P =
n∏
i=1

p(zi, Z(xi,~a))∆z =
n∏
i=1

{
e−ρ(zi,Z(xi,~a)) ∆z

}
,

where the ∆z is needed to make this meaningful. While it may be possible to
define P with ∆z = 1 for a Poisson distributiuon, in which case the zi are natural
numbers, it is not meaningful for other cases in which zi are real numbers. A good
model will result in a large probability, P . Thus, we want to adjust the parameters
~a such as to maximize the probability, P , i.e., maximizing the likelihood of the
model. This, of course, is where the name “Maximum Likelihood” comes from, see
Sec. 7.5. Following that logic, to maximize P , its logarithm,

n∑
i=1

ρ(zi, Z(xi,~a))− n ln ∆z,

must be minimized. The term −n ln ∆z is constant and therefore does not con-
tribute to the minimization. It can be discarded.

To begin this treatment, we consider for the time being a P (z, Z) which is a
normal distribution. Then

n∑
i

ρ(zi, Z(xi,~a)) =
n∑
i

(zi − Z(xi,~a))2

2σ2
i

.

This quantity needs to be minimized. Obviously, this is the case when the quadratic
mean of the distances zi−Z is as small as possible. This is exactly the meaning and
origin of the “least squares” method. In other words, the least-squares method is
a maximum likelihood method if and only if the measurement errors are normally
distributed.

Least-squares fitting techniques are maximum likelihood methods if and only
if the probability density functions which describe the distribution of data
points around the model is a normal distribution!
Once you have successfully fitted a model to your data, you should verify
that the residuals are normally distributed around zero!
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Figure 9.12: Illustration of the normal and Lorentzian distributions.

To illustrate this, let us try this out with a linear function (straight line). We
minimize

χ2 .
=

n∑
i=1

(
zi − z(xi; a1, . . . , aM)

σi

)2

.

This method is often called the χ-squared method because the probability density
function of χ2 is distributed as χ2 with n−M degrees of freedom if the measurement
errors are again normally distributed.
To minimize χ2, we take the partial derivatives of χ2 with respect to ai, equate to
zero, and obtain a system of equations. If the model z is linear this is also linear
and can easily be solved for the parameters ai,

0 =
n∑
i=1

(
zi − z(xi,~a)

σ2
i

) (
∂z(xi; . . . , ak, . . .)

∂ak

)
for k = 1, . . . ,M.

It is this property that makes linear models so easy to fit. On the other hand, if
the model is not linear in ak, some method needs to be used which can deal with a
non-linear system of equations. This can be done for instance with the algorithm
by Levenberg and Marquardt (e.g. Press et al., 1989).

9.9.1 What happens with other distributions, p(z)?

Often, measurement errors are not normally distributed but follow some other
distribution, p. Figure 9.12 shows a normal distribution (black) and a Lorentz-
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Figure 9.13: Outliers can ruin a nice correlation unless you use robust fitting
techniques.

distribution (red). Both have the same area in the interval −3 < x < 3. Obviously,
the Gaussian distribution is “narrower” and the Lorentz distribution has larger
“tails”. It is these tails that would cause the least squares method to fail.

9.9.2 Robust methods

The outliers of a Lorentz distribution will be given a larger weight than they
“deserve” by the least-squares method. The normal distribution underlying “least
squares” considers these outliers very unlikely even though they aren’t because
the true underlying distribution is Lorentzian. A more robust estimation method
could be obtained if we used the true underlying measurement statistics instead
of the wrong one.

The probability P that our model z(xi,~a) could realize the n measurements
zi(xi) is still given by

P =
n∏
i=1

pi =
n∏
i=1

{
e−ρ(zi,z(xi,~a)) ∆z

}
Such an exponential form can always be achieved. To maximize the probability P
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Figure 9.14: Illustration of discrete counts which need to be fitted with a model
function.

we can also minimize the following expression.

n∑
i=1

ρ(zi, z(xi,~a)) = −
n∑
i=1

ln(pi) (9.53)

Note that using the exponential formulation allows us to transform the product
into a sum. It is also worth noting that if ρ(zi, z(xi,~a) is not Gaussian, but more
complicated, e.g., a Lorentzian, then we will necessarily end up with a set of non-
linear equations when trying to minimize eq.9.53.

9.9.3 An Example: Fitting a straight line to rare events

Consider an experiment in which events are classified into classes or bins (in space,
time, energy, etc.). If the events are rare, then the subjective choice of intervals
(bins or bin widths) plays an important role in the analysis of the data. On the
one hand, the bins need to be chosen large (wide) enough to contain a statistically
significant number of events. On the other hand, this “smears out” the originally
available information.

The solution of this dilemma lies in careful consideration of the underlying
random process. In every bin there is an expectation value, 〈zi(xi)〉, for the corre-
sponding measurement. This needs to be modeled as accurately as possible. The
model should, on average, equal the expectation value,

〈zi(xi)〉 = z(xi,~a).

If the events are rare, then one of the possible probability distributions is the
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Figure 9.15: Illustration of how discrete counts can be fitted with a model function
for the expectation value.

Poisson distribution

P (zi) =
z(xi,~a)zi · e−z(xi,~a)

zi!
.

9.9.4 Poisson-distributed Measurements

Consider the Poisson distribution

p(zi) =
λzii e−λi

zi!
,

where λi is the expectation value λi = 〈zi(xi)〉. Now take the logarithm

ρi = − ln p(zi) = − [zi lnλi − λi − ln(zi!)] .

The sum,
∑

i ρi, needs to be minimized to maximize the probability,
∏
pi, for the

model (or expectation value), λ(~a, ~x), to fit the data, ~z. Here the ~x are the inde-
pendent variable (e.g., energy or temporal bins), and the ~a are the free parameters
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which need to be fitted. It is now straightforward to obtain the set of equations

∂ρ

∂a1

=
n∑
i=1

∂λ(xi,~a)

∂a1

− zi
∂ ln(λ(xi,~a))

∂a1

= 0,

... =
...

∂ρ

∂ak
=

n∑
i=1

∂λ(xi,~a)

∂ak
− zi

∂ ln(λ(xi,~a))

∂ak
= 0,

... =
...

∂ρ

∂aM
=

n∑
i=1

∂λ(xi,~a)

∂aM
− zi

∂ ln(λ(xi,~a))

∂aM
00,

which is no longer linear. Nevertheless, it can often still be solved.

9.9.5 AWorked Example: Fitting a Power-Law to a Particle
Energy Spectrum

Because of the underlying physical processes, energy spectra of energetic particles
in space are often well described by (piece-wise) power laws in energy. Because
of limitations in the data volume that can be transmitted back to Earth, the
data have to be binned into a limited number of (often coarse) energy bins. The
differential flux, dJ/dE, can be modeled by

dJ

dE
= J0 · E−γ (9.54)

which has two free parameters, J0 and γ. The measurements, however, are given
by counts, zi, in discrete energy bins, Ei ± ∆Ei

2
, which do not necessarily need to

be evenly distributed. If we are willing to wait long enough, we will have lots of
counts in every energy bin and can use the usual least-squares fitting techniques.
If we don’t have enough counts to do so, we could also combine bins into a smaller
number of bins at the cost of loosing information about the particle’s energy. On
the other hand, if we want to obtain higher time and energy resolution, we need
to account for the non-normal (i.e., Poisson) distribution of counts in the different
energy bins.

Note that the physical model for the spectrum which is given by eq. 9.54 is not
the model for the measurements. We first need to translate this physical model
into a measurement model. The expected number of counts , λi, in a given energy
bin, Ei, will be given by

λ(J0, γ, Ei,∆Ei) = J0 · E−γi ∆Ei. (9.55)
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As expected, the expectation value, λ, is proportional to the bin width, ∆Ei, and
intensity, J0. The bin width is a known quantity and so does not need to be fitted.
To obtain the model parameters J0 and γ which maximize the likelihood for the
model, λ, to describe the measurments, zi, we now need to evaluate

∂ρ

∂J0

=
n∑
i=1

(
∂λ(J0, γ, Ei,∆Ei)

∂J0

− zi
∂ ln(λ(J0, γ, Ei,∆Ei))

∂J0

)
= 0,

=
n∑
i=1

E−γi ∆Ei − zi
1

λi
E−γi ∆Ei = 0,

=
n∑
i=1

E−γi ∆Ei

(
1− zi

λi(J0, γ, Ei,∆Ei)

)
= 0,

=
n∑
i=1

(
E−γi ∆Ei −

zi
J0

)
= 0, (9.56)

and, similarly,

∂ρ

∂γ
=

n∑
i=1

(
∂λ(J0, γ, Ei,∆Ei)

∂γ
− zi

∂ ln(λ(J0, γ, Ei,∆Ei))

∂γ

)
= 0,

=
n∑
i=1

(
−J0∆Ei ln(Ei)E

−γ
i + zi ln(Ei)

)
= 0. (9.57)

Note that the bin width, ∆Ei, must be included even if it does not appear in
the original physical model, eq. 9.54 because the model of the measurement must
include the measurement process. The maximum-likelihood fit is now given by the
solution (J0, γ) of equations 9.56 and 9.57. You can easily see that this system of
equations for (J0, γ) is non-linear and that it depends on the bin width, ∆Ei as a
parameter, and, of course, on the measurements, zi.

Example 9.4. Radon is one of the major health hazards due to radioactivity. Its
isotope 222Rn has a half life of 3.8 days and α-decays into 218Po which in turn
α-decays with a half life of 3.1 minutes. We can model the α-decays of 218Po using
the following code snippet:

from numpy . random import exponent i a l
h a l f_ l i f e = 3 .1 #ha l f l i f e o f 218Po in minutes
s c a l e = h a l f_ l i f e / l og ( 2 . ) #so we can use exp(−time/ s c a l e )
s i z e = 10 #number o f decay time d i f f e r e n c e s
rn = exponent i a l ( s ca l e , s i z e ) #generate random times
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Note that we’re only modelling 11 decays or 10 time differences because we
want to use a maximum-likelihood fit to the data. You can check that this does
indeed result an exponential distribution by increasing size to a larger value. We
define the merit function as follows:

de f merit_func ( par , ∗ args ) :
x = args [ 0 ] #the x va lue s ( i . e . , time d i f f e r e n c e s )
y = args [ 2 ] #the data
xw = args [ 1 ] #width o f the x b ins
merit = 0 .
par = abs ( par )
f o r i in xrange (0 , l en ( par ) , 2 ) :

mer it += abs (sum( par [ i ]∗ exp(−x/abs ( par [ i +1]))∗xw)\
− sum(y∗ l og ( par [ i ]∗ exp(−x/abs ( par [ i +1]))∗xw) ) )

p r i n t ’ mer it ␣=␣ ’ , mer it
i f par [ 0 ] < 1 . e−10 or par [ 1 ] < 0 .

or i snan ( merit ) : #u n r e a l i s t i c va lue s
p r i n t ’ u n r e a l i s t i c : ␣mer it ␣=␣{} ’ . format ( mer it )
f o r i in xrange (0 , l en ( par ) , 2 ) :

p r i n t i , ’ par [ { } ] ␣=␣{} , ␣par [ { } ] ␣=␣{} ’
. format ( i , par [ i ] , i +1,par [ i +1])

merit = par [ 0 ] ∗ 1 . e22 + par [ 1 ] ∗ 1 . e+19
return merit

r e turn merit

It is called by the following lines

de f f i t_dt_di s t ( xdat , xw , ydat , par ) :
" prepare ␣ f o r ␣and␣ f i t ␣an␣ exponent i a l ␣ to ␣ the ␣data"
args = ( xdat , xw , ydat )
[ popt , fopt , gopt , Bopt , func_ca l l s , grad_cal l s , warnf lg ] = \

fmin_bfgs ( merit_func , x0=abs ( par ) , a rgs=args , \
fu l l_output=True )

re turn popt , Bopt

true_model = s i z e / s c a l e ∗exp(−plot_bins / s c a l e )
e s t i_ s c a l e = sum( rn )/ s i z e
esti_model = s i z e / e s t i_ s c a l e ∗exp(−plot_bins / e s t i_ s c a l e )
par = array ( [ s i z e / e s t i_sca l e , e s t i_ s c a l e ] )
popt , Bopt = f i t_dt_di s t ( plot_bins , dbins , h i s t , par )
f i t ted_model = popt [ 0 ] ∗ exp(−plot_bins /popt [ 1 ] )

. . . and we plot the results with
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f i g , ax = subp lo t s ( )
ax . s e t_x labe l ( ’ time␣between␣decays ␣ [ minutes ] ’ , f o n t s i z e =14)
ax . s e t_y labe l ( r ’ counts ␣ per ␣bin ␣ [ minute$^{−1}$ ] ’ , f o n t s i z e =14)
ax . p l o t ( plot_bins , f itted_model , c o l o r=’k ’ , lw=3,\

l a b e l=’ f i t t e d ␣model ’ )
p l t . bar ( plot_bins −0.5∗0.75∗ dbins , h i s t /dbins , l a b e l=’ data ’ ,\

width=0.75∗ dbins , a l i g n=’ edge ’ , alpha =0.5)
ax . p l o t ( plot_bins , true_model , c o l o r=’ blue ’ , lw=2,

l a b e l=’ t rue ␣model ’ )
ax . p l o t ( plot_bins , esti_model , c o l o r=’ red ’ , lw=2, l s=’ dashed ’ ,

l a b e l=’ est imated ␣model/\ n i n i t i a l ␣ guess ’ )
ax . e r r o rba r ( plot_bins , h i s t /dbins , s q r t ( h i s t ) , fmt=’ ko ’ )
ax . l egend ( )
ax . tick_params ( ax i s=’ both ’ , which=’major ’ , l a b e l s i z e =14)
ax . set_ylim ( bottom=0)
s a v e f i g ( ’ exp_decay_maxli_fit . pdf ’ )
show ( )

All of this results in the plot shown in fig. 9.16 (or a similar one, depending on
the random numbers produced by the exponential() random number generator).
Note that we have allowed for uneven bins in this example. The blue curve shows
the true, underlying distribution, from which the data shown in the histogram
have been drawn. The initial guess was determined as shown in eq. 9.58

τ =
1

n

n∑
i

τi and model estimate =
n

τ
e−t/τ , (9.58)

as is also shown in the code snippets on page 169.
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Figure 9.16: A set of 10 random waiting times between decays of 218Po which has
a half life of 3.1 minutes. The histogram shows the “data”, counts binned into
minute wide bins for small values and wider 2-minute bins for larger times. The
blue curve shows the true, underlying distribution, the dashed red line the estimate
explained in the text, and the black curve the fitted model.



172 CHAPTER 9. FITTING A MODEL TO THE DATA



Chapter 10

Detecting Breakpoints in a Data
Series

10.0.1 Standard Normal Homogeneity Test (SNHT)

Quite often one needs to find discontinuities in data, also called breakpoints. Fig-
ure 10.1 shows a simulated example for which I generated artificial data which are
distributed as a Poissonian distribution around expectation values λ1 = 4.5 and
λ2 = 6.5. In other words, they mimick count rates with low counting statistics.

Consider the situation sketched in Fig. 10.1. We have data in the form of a
time series and want to find the breakpoint. To do so we perform the following
steps:

1) If needed, homogenize the data: If you have wildly different data from dif-
ferent sources with different properties such as variances, it makes sense to
homogenize these data sets by computing a standardised data set

Zi
.
= (qi − q̄)/σq, (10.1)

where qi are the data points of data series Q, σq their standard deviation, and
Zi the standardized series with zero mean and standard deviation σz = 1.

2) Define the null and alternate hypotheses for a discontinuity in the data:

H0 : zi ∼ N(0, 1) for i = 1, 2, . . . , n,(10.2)

H1 :

{
zi ∼ N(µ1, 1) fori = 1, . . . , a
zi ∼ N(µ2, 1) fori = a+ 1, . . . , n

, (10.3)

where N(µ, σ) as usual denotes the normal distribution with mean µ and
standard deviation σ.
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Figure 10.1: Simulated data with a breakpoint (discontinuity) around 17:00:24.
The vertical blue dashed line indicates the true breakpoint whereas the vertical
black dashed line shows the inferred breakpoint. Horizontal black lines show the
averages of the data to the left and right of the breakpoint.
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3) Test the validity of H0 against H1. To do so, Andersson (1986) derived a test
statistic, T , which relies on the probabilities of the two hypotheses based on
the observations zi. He defined

T
.
= max(az̄2

1 + (n− a)z̄2
2), for1 ≤ a ≤ n− 1, ) (10.4)

where z̄1 and z̄2 are the averages of zi before and after potential “breakpoints”
located at a. The point a which maximizes the quantity inside the parenthesis
in eq. 10.4 is then the most likely breakpoint.

4) We reject the null hypothesis, H0, in favor the the alternate hypothesis, H1

if the test statistic, T , is larger than a critical value for a certain significance
level. The most complete table of critical values which I found is given in
Khaliq and Ouarda (2007). Some of these values are given in Tab. 10.1.

This test is called the standard normal homogeneity test (SNHT). The result
of such a test with simulated values is shown in Fig. 10.1. In that case, the test
statistic, T , exceeded the critical level and we can believe the result at the 1%
confidence level.

Sample crit. level (%)
size 95 99
10 5.637 6.769
20 7.089 9.113
30 7.747 10.153
40 8.151 10.771
50 8.432 11.193
70 8.814 11.737
100 9.167 12.228
150 9.519 12.694
200 9.741 12.982
400 10.202 13.542
800 10.580 13.975
1000 10.692 14.105

Table 10.1: Table of some critical values of the SNHT test statistic T for different
sample sizes and the 95% and 99% critical (confidence) levels. Values were taken
from Khaliq and Ouarda (2007).
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